HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Ta có: 2x2=x3 ⇔ x2 (2-x)=0 ⇔ x=0 và x = 2
Hoành độ giao điểm của hai đường cong là: x = 0 và x =2
Bởi vì 2x2=x3=x2 (2-x)≥0 với x≤2 nên đường cong y=2x2 nằm trên đường cong y=x3 trong khoảng (0; 2). Do đó thể tích cần tính là:
a) Tập hợp các điểm M(x; y) của mặt phẳng tọa độ biểu diễn số phức z = x +yi thỏa mãn điều kiện:
|z|<2 ⇔ √(x2+y2 )<2 ⇔x2+y2<4
Các điểm M(x; y) như vậy nằm trong đường tròn có tâm O bán kính bằng 2 không kể các điểm trên đường tròn.
b) Giả sử z=x+yi=>z-i=z+(y-1)i
|z-1|≤1 ⇔ √(x2 (y-1)2 )≤1 ⇔x2+(y-1)2≤1
Tập hợp tất cả các điểm biểu diễn các số phức thỏa mãn |z – 1|≤1 là các điểm của hình tròn tâm (0; 1) bán kính bằng 1 kể cả biên.
c) z=x+yi=>z-1-i=(x-1)+(y-1)i
|z-1-i|<1 ⇔ (x-1)2+(y-1)2<1
Tập hợp các điểm đang xét là các điểm của hình tròn ( không kể biên) tâm (1;1), bán kính bằng 1.