HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Số lớn gấp 10 làn số bé và thêm 1 đơn vị
Số bé là:(2870-1):(1+10)=........
Số lớn là:2870-...=.....
Đề sai nhé
1) Đặt \(2+lnx=t\Leftrightarrow x=e^{t-2}\Rightarrow dx=e^{t-2}dt\)
\(I_1=\int\left(\frac{t-2}{t}\right)^2\cdot e^{t-2}\cdot dt=\int\left(1-\frac{4}{t}+\frac{4}{t^2}\right)e^{t-2}dt\\ =\int e^{t-2}dt-4\int\frac{e^{t-2}}{t}dt+4\int\frac{e^{t-2}}{t^2}dt\)
Có:
\(4\int\frac{e^{t-2}}{t^2}dt=-4\int e^{t-2}\cdot d\left(\frac{1}{t}\right)=-\frac{4\cdot e^{t-2}}{t}+4\int\frac{e^{t-2}}{t}dt\\ \Leftrightarrow4\int\frac{e^{t-2}}{t^2}dt-4\int\frac{e^{t-2}}{t^{ }}dt=-\frac{4\cdot e^{t-2}}{t}\)
Vậy \(I_1=\int e^{t-2}dt-\frac{4\cdot e^{t-2}}{t}=e^{t-2}-\frac{4e^{t-2}}{t}+C\)
1)
\(\int\frac{tan^3x}{cos2x}dx=\int\frac{sin^3x}{cos^3x\cdot\left(2cos^2x-1\right)}dx=\int\frac{1-cos^2x}{cos^3x\left(2cos^2x-1\right)}\cdot sinx\cdot dx\\ =\int\frac{1-cos^2x}{cos^3x\left(2cos^2x-1\right)}d\left(cosx\right)=...\)
Đặt x=2t, dx=2dt
\(2sinx+5cosx+3=2sin2t+5cos2t+3\\ =4sint\cdot cost+5\left(cos^2t-sin^2t\right)+3\left(sin^2t+cos^2t\right)\\ =-2sin^2t+4sint\cdot cost+8cos^2t\)
Ta có:
\(I=\int\frac{2dt}{-2sin^2t+4sint\cdot cost+8cos^2t}\\ =\int\frac{\frac{dt}{cos^2t}}{-tan^2t+2tant+4}=\int\frac{d\left(tant\right)}{-tan^2t+2tant+4}\\ =\int\frac{-d\left(tant\right)}{\left(tant-1+\sqrt{5}\right)\left(tant-1-\sqrt{5}\right)}\\ =\frac{1}{2\sqrt{5}}\int\left(\frac{1}{tant-1+\sqrt{5}}-\frac{1}{tant-1-\sqrt{5}}\right)dt\)
\(=\frac{1}{2\sqrt{5}}ln\left|\frac{tant-1+\sqrt{5}}{tant-1+\sqrt{5}}\right|+C\)
....
1, The students like to read scientific books in library
2, Mr. Brown ofent gives advice to his students
3, The girls have to learn how to make cakes
4, She is at school now and she is teaching English at my class
5, It's easy to find a book either an author or atitle
đặt \(x=\frac{\sqrt{3}}{cost};\forall t\in\left(0;\frac{\pi}{2}\right)\Rightarrow tant>0\)
\(dx=d\left(\frac{\sqrt{3}}{cost}\right)=\frac{-\sqrt{3}sint}{cos^2t}dt\)
Thay vào, ta có \(\int\frac{\sqrt{3}\cdot\frac{-\sqrt{3}sint}{cos^2t}}{\frac{\sqrt{3}}{cost}\sqrt{\frac{3}{cos^2t}-3}}dt=\int\frac{-3\cdot\frac{sint}{cos^2t}}{\frac{3}{cost}\cdot\sqrt{tan^2t}}dt=\int\frac{-sint}{cost\cdot tant}dt=-\int dt=-t+C\)
Bây giờ thay t vào là ra
\(\int\frac{dx}{x^5\left(x^4+5\right)}=\frac{1}{25}\int\left(\frac{5}{x^5}-\frac{1}{x}+\frac{x^3}{x^4+5}\right)dx\)
\(\int\frac{5}{x^5}dx=-\frac{5}{4}.x^{-4}+C\)
\(\int\frac{1}{x}dx=ln\left|x\right|+C\)
\(\int\frac{x^3}{x^4+5}dx=\frac{1}{4}\cdot\int\frac{d\left(x^4+5\right)}{x^4+5}=\frac{ln\left(x^4+5\right)}{4}+C\)
5) Đặt \(x=3sint\Leftrightarrow dx=3cost\cdot dt\)
\(I_5=\int\frac{3cost}{\sqrt{9-9sin^2t}}dt=\int\frac{3cost}{3cost}dt=\int dt=t+C\)
.....
4) \(I_3\int\frac{dx}{x\left(x-1\right)\left(3x-4\right)}=\int\left(\frac{A}{x}+\frac{B}{x-1}+\frac{C}{3x-4}\right)dx=...\)
Bạn tự tìm A,B,C nhé
3)
\(\frac{1}{\left(1+\sqrt{x}\right)+\sqrt{x+1}}=\frac{\left(1+\sqrt{x}\right)-\sqrt{x+1}}{\left[\left(1+\sqrt{x}\right)-\sqrt{x+1}\right]\cdot\left[\left(1+\sqrt{x}\right)+\sqrt{x+1}\right]}\\ =\frac{\left(1+\sqrt{x}\right)-\sqrt{x+1}}{2\sqrt{x}}=\frac{1}{2\sqrt{x}}+\frac{1}{2}+\frac{\sqrt{x+1}}{2\sqrt{x}}\)
\(I_3=\int\left(\frac{1}{2\sqrt{x}}+\frac{1}{2}+\frac{\sqrt{x+1}}{2\sqrt{x}}\right)dx=\sqrt{x}+\frac{x}{2}+\int\sqrt{\frac{x+1}{x}}\cdot\frac{dx}{2}\)
Xét \(\int\sqrt{\frac{x+1}{x}}\cdot\frac{dx}{2}\)
Đặt \(x=tan^2t\Leftrightarrow dx=\frac{2tant}{cos^2t}\cdot dt\)
\(\Rightarrow\int\sqrt{\frac{x+1}{x}}\cdot\frac{dx}{2}=\int\sqrt{\frac{tan^2t+1}{tan^2t}}\cdot\frac{tant}{cos^2t}dt\\ =\int\frac{1}{sin^2t}\cdot\frac{sint}{cos^3t}dt=\int\frac{d\left(cost\right)}{cos^3t\left(1-cos^2t\right)}=...\)