\(\int\frac{dx}{x^5\left(x^4+5\right)}=\frac{1}{25}\int\left(\frac{5}{x^5}-\frac{1}{x}+\frac{x^3}{x^4+5}\right)dx\)
\(\int\frac{5}{x^5}dx=-\frac{5}{4}.x^{-4}+C\)
\(\int\frac{1}{x}dx=ln\left|x\right|+C\)
\(\int\frac{x^3}{x^4+5}dx=\frac{1}{4}\cdot\int\frac{d\left(x^4+5\right)}{x^4+5}=\frac{ln\left(x^4+5\right)}{4}+C\)