HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
số hạng cuối của B phải là 3^1992 mới đúng
a, nhóm 3 số hạng liền nhau thì ta có
B=(3+3^5+3^9) +...+ [3^n+3^(n+4)+3^(n+5)] +...+ (3^1984+3^1988+3^1992)
xét số hạng tổng quát: 3^n+3^(n+4)+3^(n+5)= 3^n .(1+3^4+3^8)=
=3^n . (3^3-1)(3^3+1)(3^6+1)/(3^4-1)
=3^n . 26 .(3^3+1)(3^6+1)/(3^4-1)
vậy B chia hết cho 26, hay B chia hết cho 13