HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
ĐKXĐ : \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
Ta có :
\(M=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right):\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(=\left(\dfrac{a-1}{2\sqrt{a}}\right):\left(\dfrac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{2\sqrt{a}}.\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1-\sqrt{a}-1\right)\left(\sqrt{a}-1+\sqrt{a}+1\right)}\)
\(=\dfrac{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}+1\right)^2}{-8\sqrt{a}}\)
Vậy....
a/ \(A=\dfrac{6}{5.8}+\dfrac{22}{8.19}+\dfrac{24}{19.31}+\dfrac{198}{101.200}\)
\(=2\left(\dfrac{3}{5.8}+\dfrac{11}{8.19}+\dfrac{12}{19.31}+...+\dfrac{99}{101.200}\right)\)
\(=2\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+....+\dfrac{1}{101}-\dfrac{1}{200}\right)\)
\(=2\left(\dfrac{1}{5}-\dfrac{1}{200}\right)\)
\(=\dfrac{39}{100}\)
b/ \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...........
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{99.100}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow A< 1-\dfrac{1}{100}< 1\left(đpcm\right)\)
Phương trình hoành độ giao điểm là :
\(-x^2=mx+2\)
\(\Leftrightarrow x^2+mx+2=0\)
Lại có : \(\Delta=m^2-8>0\)
Theo định lí Vi - et ta có :
\(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=2\end{matrix}\right.\)
\(\left(x1+1\right)\left(x2+1\right)=0\)
\(\Leftrightarrow x1x2+x1+x1+1=0\)
\(\Leftrightarrow2-m+1=0\Leftrightarrow m=3\)
a/ Xét \(\Delta ABC\) và \(\Delta HAC\) có :
\(\left\{{}\begin{matrix}\widehat{C}chung\\\widehat{BAC}=\widehat{AHC}=90^0\end{matrix}\right.\)
\(\Leftrightarrow\Delta ABC\sim HAC\left(g-g\right)\)
b/ \(BC=\sqrt{AB^2+AC^2}=10cm\)
\(AH.BC=AB.AC\Leftrightarrow AH=\dfrac{AB.AC}{BC}=4,8cm\)
c/ \(\Delta HEA\sim\Delta CEH\left(g-g\right)\)
\(\Leftrightarrow\dfrac{HE}{CE}=\dfrac{EA}{HE}\Leftrightarrow HE^2=EA.EC\left(đpcm\right)\)
ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
\(A=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{4-x}+\dfrac{1}{2+\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}-1\right)\)
\(=\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{2+\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+2+2\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{2-\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{2-\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{-2}{\sqrt{x}+2}\)
b/ \(A< -1\)
\(\Leftrightarrow\dfrac{-2}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}+2}< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\\sqrt{x}-2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x< 4\end{matrix}\right.\)
Vậy..
Để hàm số đc xác định :
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m-1\\x\le2m\end{matrix}\right.\)
\(\Leftrightarrow m-1\le x\le2m\)
Mà \(x\in\left(-1;3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-1\le-1\\2m\ge3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le0\\x\ge\dfrac{3}{2}\end{matrix}\right.\)
Gọi quãng đường AB là \(x\left(x>0\right)\)
Lúc đi : \(x=50t\left(km\right)\)
Lúc về : \(x=60\left(t-0,5\right)\)
Từ đó ta có pt :
\(\Leftrightarrow50t=60t-30\Leftrightarrow t=\left(3h\right)\)
Khi đó : \(x=150\left(km\right)\)
\(\dfrac{U_1}{U_2}=\dfrac{N_1}{N_2}\)
\(\Leftrightarrow\dfrac{150}{12}=\dfrac{6000}{N_2}\)
\(\Leftrightarrow N_2=480\) (vòng)
đại gia cho người nghèo xin ít tiền nào @@
\(\left(3x+3\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+3=0\\x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=6\end{matrix}\right.\)