HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a) thay \(x^2y^2=2y^2-1\) vào PT (2):
\(\left(xy+1\right)\left(2y-x\right)=2x\left(2y^2-1\right)\)
\(\Leftrightarrow2xy^2-x^2y+2y-x=4xy^2-2x\)
\(\Leftrightarrow2xy^2-x+x^2y-2y=0\)
\(\Leftrightarrow\left(xy-1\right)\left(2y+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1\\x=-2y\end{matrix}\right.\)...
b)
Mặc dù thất bại, nhưng cuộc vận động Duy tân ở Trung Quốc ( 1898) có ý nghĩa gì?
A. Làm lung lay trật tự, nền tảng chế độ phong kiến Trung Quốc.
B. Mở đường cho trào lưu tư tưởng tiến bộ xâm nhập vào Trung Quốc.
C. Mâu thuẫn giữa các thế lực trong triều đình Mãn Thanh phát triển gay gắt.
D. Lôi kéo được đông đảo quần chúng tham gia, tạo nền tảng cho các cuộc cách mạng sau này.
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}\ge2\sqrt{1+\dfrac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
\(\dfrac{1}{6a+1}+\dfrac{\dfrac{4}{49}}{2}\ge\dfrac{\left(1+\dfrac{2}{7}\right)^2}{3\left(2a+1\right)}\)
\(GT\Leftrightarrow\dfrac{a^2\left(a+c\right)+b^2\left(b+c\right)}{c}=3\)\(\Leftrightarrow3c=a^3+b^3+\left(a^2+b^2\right)c\)
\(VT=\dfrac{\left(a+c\right)\left(b^3+2\right)}{2\left(b^3+2\right)}-\dfrac{b^3\left(a+c\right)}{2\left(b^3+2\right)}+\dfrac{\left(b+c\right)\left(a^3+2\right)}{2\left(a^3+2\right)}-\dfrac{a^3\left(b+c\right)}{2\left(a^3+2\right)}-2\sqrt{a+b+c}\)
\(=\dfrac{a+b+2c}{2}-\dfrac{b^3\left(a+c\right)}{2\left(b^3+1+1\right)}-\dfrac{a^3\left(b+c\right)}{2\left(a^3+1+1\right)}-2\sqrt{a+b+c}\)
Áp dụng BĐT AM-GM:
\(b^3+1+1\ge3b\) ; \(a^3+1+1\ge3a\).
Do đó :\(VT\ge\dfrac{a+b+2c}{2}-\dfrac{b^2\left(a+c\right)+a^2\left(b+c\right)}{6}-2\sqrt{a+b+c}\)
Để ý rằng \(b^2\left(a+c\right)+a^2\left(b+c\right)=ab\left(a+b\right)+\left(a^2+b^2\right)c\le a^3+b^3+\left(a^2+b^2\right).c=3c\)
\(\Rightarrow VT\ge\dfrac{a+b+2c}{2}-\dfrac{3c}{6}-2\sqrt{a+b+c}=\dfrac{a+b+c}{2}-2\sqrt{a+b+c}\)
\(=\dfrac{\left(\sqrt{a+b+c}-2\right)^2-4}{2}\ge-2\).
Dấu = xảy ra khi a=b=1;c=2
Còn một cách rất pá đạo nữa , không hiểu nổi lấy ý tưởng từ đâu luôn:
CM:\(a^2+b^2+c^2\ge4\sqrt{3}S\)
\(\Leftrightarrow a^2+b^2+c^2-4\sqrt{3}S\ge0\)
\(\Leftrightarrow a^2+b^2+a^2+b^2-2ab.\cos C-4\sqrt{3}.\dfrac{1}{2}.ab.\sin C\ge0\)( định lý cos + CT diện tích)
\(\Leftrightarrow2\left(a^2+b^2-2ab\right)+4ab-4ab.\dfrac{1}{2}.\cos C-4ab.\dfrac{\sqrt{3}}{2}.\sin C\ge0\)
\(\Leftrightarrow2\left(a-b\right)^2+4ab\left(1-\cos\dfrac{\pi}{3}.\cos C-\sin\dfrac{\pi}{3}.\sin C\right)\ge0\)
( \(\cos\dfrac{\pi}{3}=\cos60=\dfrac{1}{2}\);\(\sin\dfrac{\pi}{3}=\sin60=\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow2\left(a-b\right)^2+4ab\left[1-\cos\left(\dfrac{\pi}{3}-C\right)\right]\ge0\)( luôn đúng vì \(-1\le\cos\alpha\le1\))
( \(\cos\left(x-y\right)=\cos x\cos y+\sin x\sin y\))
A B C H M
a) Gọi AM là đường trung tuyến. Dễ dàng suy ra \(AM=\dfrac{1}{2}BC\)
Lại có:\(\sqrt{ab}=\sqrt{BH.HC}=\sqrt{AH^2}=AH\)
nên để chứng minh \(\sqrt{ab}\le\dfrac{a+b}{2}\) ta chỉ cần chứng minh \(AH\le AM\)( điều này luôn đúng)
b)Kết quả thì đúng nhưng là do ..ăn may. Điểm rơi của BĐT AM-GM là a=b .Nếu điểm rơi của bài toán \(HB\ne HC\) thì nó lại là kết quả khác .KL : lời giải không phù hợp
E.x 3:
Áp dụng bunyakovsky:
\(VT=\left(1+\dfrac{2a}{b}\right)^2+\left(1+\dfrac{2b}{c}\right)^2+\left(1+\dfrac{2c}{a}\right)^2\ge\dfrac{1}{3}\left(3+\dfrac{2a}{b}+\dfrac{2b}{c}+\dfrac{2c}{a}\right)^2\)
Áp dụng cauchy-schwarz:
\(VT\ge\dfrac{1}{3}\left(3+\dfrac{2\left(a+b+c\right)^2}{ab+bc+ca}\right)\)
Đặt \(\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}=t\) thì \(t\ge3\)
Cần chứng minh \(\dfrac{1}{3}\left(3+2t\right)^2\ge9t\Leftrightarrow\left(t-3\right)\left(4t-3\right)\ge0\)( đúng)
Vậy BĐT được chứng minh .