HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a) \(A=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\left(a>0;a\ne1\right)\)
\(=\left[\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right]:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}-1}{\sqrt{a}}\)
b) Để \(A=\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{a}-1}{\sqrt{a}}=\frac{1}{2}\)
\(\Leftrightarrow2\sqrt{a}-2=\sqrt{a}\)
\(\Leftrightarrow\sqrt{a}=2\Leftrightarrow a=4\left(tm\right)\)
sai đề phần a)
lần đầu thấy tứ giác có 3 đỉnh
x + 2/5 = 2-x/4
=>20x /20 + 8 /20 = 40 /20 -5x /20
=>20x+8 = 40 -5x
=>20x +8 -40 +5x =0
=>25x -32 =0
=>x=32/25
Ví dụ a/b = c/d
=> a.c = b.d
a.d ( là tích ngoại tỉ )
b.c ( là tích trung tỉ )
a) Có: \(\left(a-1\right)^2\ge0,\forall a\)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\)
=>đpcm
b) Áp dụng bđt trên ta có:
\(\left(a+1\right)^2\ge4a\) (1)
\(\left(b+1\right)^2\ge4b\) (2)
\(\left(c+1\right)^2\ge4c\) (3)
Nhân vế vs vế (1) ; (2);(3) ta đc:
\(\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge4a\cdot4b\cdot4c=64abc=64\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\)
A B C K E
a) Xét ΔAKB và ΔAKC có:
AB=AC(gt)
AK:cạnh chung
BK=CK(gt)
=> ΔAKB=ΔAKC(c.c.c)
=> \(\widehat{AKB}=\widehat{AKC}\)
Mà: \(\widehat{AKB}+\widehat{AKC}=180^o\)
=> \(\widehat{AKB}=\widehat{AKC}=90^o\)
=> \(AK\perp BC\)
b) Vì: \(EC\perp BC\left(gt\right)\)
Mad: \(AK\perp BC\left(cmt\right)\)
=> EC//AK
A B C M N I 1 2 1 2
a) Xét ΔABN và ΔACM có:
\(\widehat{A}\) : góc chung
AN=AM(gt)
=> ΔABN=ΔACM(c.g.c)
=> \(\widehat{B_1}=\widehat{C_1}\)
Vì: ΔABC cân tại A(gt)
=> \(\widehat{B}=\widehat{C}\)
Vì: \(\widehat{B}=\widehat{B_1}+\widehat{B_2}\)
\(\widehat{C}=\widehat{C_1}+\widehat{C_2}\)
Mà: \(\widehat{B}=\widehat{C}\left(cmt\right);\widehat{B_1}=\widehat{C_1}\left(cmt\right)\)
=> \(\widehat{B_2}=\widehat{C_2}\)
=> ΔBIC cân tại I
\(\left(2x-14\right)\left(3^x-9\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-14=0\\3^x-9=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}2x=14\\3^x=9\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=7\\x=2\end{array}\right.\)
=(3x^3-5x^3)-(6x-3x)
=-2x^3-3x