Đặt \(A\left(a;a^3-3a^2+2\right);B\left(b;b^3-3b^2+2\right);a\ne b\)
Hệ số góc của tiếp tuyến với (C) tại A, B là :
\(k_A=y'\left(x_A\right)=3a^2-6a;k_B=y'\left(x_B\right)=3b^2-6b\)
Tiếp tuyến của (C) tại A và B song song với nhau khi và chỉ khi \(k_A=k_B\)
\(\Leftrightarrow3a^2-6a=3b^2-6b\Leftrightarrow\left(a-b\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow b=2-a\)
Độ dài đoạn AB là :
\(AB=\sqrt{\left(a-b\right)^2+\left[a^3-b^3-3\left(a^2-b^2\right)\right]^2}\)
\(=\sqrt{\left(a-b\right)^2+\left(a-b\right)^2.\left[a^2+ab+b^2-3\left(a+b\right)\right]^2}\)
\(=\sqrt{4\left(a-1\right)^2+4\left(a-1\right)^2\left[\left(a-1\right)^2-3\right]^2}\)
Đăth \(\left(a-1\right)^2=t\) mà \(AB=4\sqrt{2}\Leftrightarrow t+t\left(1-3\right)^2=8\Leftrightarrow\left(t-4\right)\left(t^2-2t+2\right)=0\)
\(\Leftrightarrow t=4\Rightarrow\left[\begin{array}{nghiempt}a-1=2\\a-1=-2\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}a=3\\a=-1\end{array}\right.\)
* Với \(a=3\Rightarrow b=-1\Rightarrow A\left(3;2\right);B\left(-1;-2\right)\)
* Với \(a=1\Rightarrow b=3\Rightarrow A\left(-1;-2\right);B\left(3;2\right)\)
Vậy \(A\left(-1;-2\right);B\left(3;2\right)\) hoặc \(A\left(3;2\right);B\left(-1;-2\right)\)