HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Tuyển Cộng tác viên Hoc24 nhiệm kì 28 tại đây: https://forms.gle/GrfwFgzveoKLVv3p6
Chứng minh rằng :
\(\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}>\frac{9}{4}\)
Cho A=
\(\frac{1}{\sqrt{1.1999}}+\frac{1}{\sqrt{2.1998}}+\frac{1}{\sqrt{3.1997}}+\dots+\frac{1}{\sqrt{1999.1}}\)
Hãy so sánh A và 1,999
Cho các số thực x;y thỏa mãn:
\(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)
Hãy tính giá trị của x+y
Cho\(\Delta ABC\) nhọn,BC=a,CA=b,AB=c.
CMR:
\(S_{\Delta ABC}=\frac{1}{2}bc.sinA=\frac{1}{2}ca.sinB=\frac{1}{2}ab.sinC\)
Cho \(\Delta\)ABC cân tại đỉnh A có góc A nhọn,đường cao BH.CMR:
\(\frac{AH}{HC}=\frac{1}{2}\left(\frac{BC}{CH}\right)^2-1\)