HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
bn ơi sao y/2=z/3 => y/10=z/25 đc v ạ.
Hoa is interested in playing badminton in her free time.
Ta thấy: (2x - 5)2024≥ 0 ∀ x ∈ R
(3y + 4)26 ≥ 0 ∀ y ∈ R
=> (2x - 5)2024 + (3y + 4)26 ≥ 0
Mặt khác: (2x - 5)2024 + (3y + 4)26 ≤ 0
Suy ra: (2x - 5)2024 + (3y + 4)26 = 0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy...
= \(\left(\dfrac{7}{3}+\dfrac{7}{2}\right):\left(-\dfrac{25}{6}+\dfrac{22}{7}\right)+\dfrac{15}{2}\)
= \(\dfrac{35}{6}:\left(-\dfrac{43}{42}\right)+\dfrac{15}{2}\)
= \(-\dfrac{245}{43}+\dfrac{15}{2}\) = \(\dfrac{155}{86}\)
G = x2 - x + 10
= \(\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{39}{4}\)
= \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{39}{4}\)
Ta thấy: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\in R\)
=> \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}\)
=> Min G = \(\dfrac{39}{4}\)\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy Min G = 39/4 khi x = 1/2
Có: (2x + y)(4x2 - 2xy + y2) = 8x3 + y3
Lời giải:
Ta có: (2x + y)(4x2 - 2xy + y2)
= 2x(4x2 - 2xy + y2) + y(4x2 - 2xy + y2)
= 8x3 - 4x2y + 2xy2 + 4x2y - 2xy2 + y3
= 8x3 + y3.
Có: A = (2,4x2 + 1,7y2 + 2xy) - (0,4x2 - 1,3y2 + xy)
= (2,4x2 - 0,4x2) + (1,7y2 + 1,3y2) + (2xy - xy)
= 2x2 + 3y2 + xy
Bậc của đa thức A = 2