HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
cho hình bình hành ABCD và ABMN không đồng phẳng . Tìm số giao điểm của mặt phẳng (ABCD) với đường thẳng MB
1) cho dãy số có các số hạng đầu là 8; 15;22; 29; 36;.. số hạng tổng quát của dãy số là
2) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=2;d=9\). Khi đó số 2018 là số hạng thứ mấy của dãy
3) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=5;q=2\). Số hạng thứ 6 của cấp số nhân là
4) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=2;u_2=6\).Công bội của cấp số nhân bằng
1) cho dãy \(\left(u_n\right)\) xác đinh bởi \(u_n=2.3^n\) giá trị của \(u_{20}\) với mọi số nguyên dương n là
2) cho dãy số \(\left(u_n\right)\) biết \(u_n=3^n\) số hạng \(u_{n+1}\) bằng
3) cho dãy số \(\left(u_n\right)\), \(n\in N\)* biết \(u_n=\dfrac{1}{n+1}\) ba số hạng đầu tiên của dãy số là
1) gọi x là nghiệm trong khoảng \(\left(\pi;2\pi\right)\) của phương trình \(cosx=\dfrac{\sqrt{3}}{2}\) nếu biểu diễn \(x=\dfrac{a\pi}{b}\) với a, b là 2 số nguyên và \(\dfrac{a}{b}\) là phân số tối giản thì ab bằng bao nhiêu
2) phương trình \(sinx=\dfrac{1}{2}\) có bao nhiêu nghiệm trên đoạn \(\left[0;20\pi\right]\)
3) phương trình \(cos\)(x + 30độ ) = \(\dfrac{1}{2}\) có nghiệm là
1) biết các nghiệm của phương trình \(cos2x=-\dfrac{1}{2}\) có dạng \(x=\dfrac{\pi}{m}+k\pi,k\in Z\) với m,n là các số nguyên dương. Khi đó m+n bằng
2) cho \(x=\dfrac{\pi}{3}+k2\pi\left(k\in Z\right)\) là nghiệm của phương trình
3) cho \(x=\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\) là nghiệm của phương trình
1) phương trình cosx = m có nghiệm khi
2) nghiệm của phương trình \(tan2x-1=0\) là
3) nghiệm của phương trình \(2cos2x=-2\)
1) nghiệm dương nhỏ nhất của phương trình \(cot\left(x-\dfrac{\pi}{6}\right)=\sqrt{3}\) là
2) phương trình \(sin\left(\dfrac{2x}{3}+\dfrac{\pi}{3}\right)=0\) có nghiệm là
3) họ nghiệm của phương trình \(cot\)(2x - 30 độ) = \(\sqrt{3}\) là
1) cho góc x thỏa mãn \(cosx=-\dfrac{4}{5}\) và \(\pi< x< \dfrac{3\pi}{2}\) tính \(P=tan\left(x-\dfrac{\pi}{4}\right)\)
2) giải phương trình \(2cosx-\sqrt{2}=0\)
3) phương trình lượng giác \(cos3x=cos\dfrac{\pi}{15}\) có nghiệm là
1) hàm số \(y=3sinx\) luôn nhận giá trị trong tập nào
2) cho \(cosx=-\dfrac{2}{3}\), \(cos2x\) bằng
3) cho \(cosx=-\dfrac{3}{5}\), \(\dfrac{\pi}{2}< x< \pi\) thì \(sin2x\)