HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
1) \(\dfrac{4\sqrt{x}-x-4}{x-4}=\dfrac{-\left(x-4\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+2}\)
2) \(\dfrac{x+y-2\sqrt{xy}}{x\sqrt{y}-y\sqrt{x}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)
3) \(\dfrac{x-9}{x\sqrt{x}-27}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}\right)^3-3^3}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(x+3\sqrt{x}+9\right)}=\dfrac{\sqrt{x}+3}{x+3\sqrt{x}+9}\)
hình a
Các vận động viên phải đi trong số ngày là: 39:13=3 ngày
Đáp số: 33 ngày
1. Although
2. despite
3. although
4. although
5. because of
6. because
7. because
8. because of
9. because of
10. because of
\(\Leftrightarrow3y-16=12\)
\(\Leftrightarrow3y=28\)
\(\Leftrightarrow y=\dfrac{28}{3}\)
\(\Leftrightarrow3\left(y+7\right)=24\Leftrightarrow y+7=8\Leftrightarrow y=1\)
Vậy, y=1
\(Vì\left\{{}\begin{matrix}\left|x+2\right|\ge0\\\left|x^2+2x\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\x\left(x+2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
Vậy, \(x\in\left\{0;-2\right\}\)
c) \(PT\Leftrightarrow\sqrt{\left(x+\sqrt{3}\right)^2}=2\sqrt{3}\)
\(\Leftrightarrow\left|x+\sqrt{3}\right|=2\sqrt{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\sqrt{3}\\x+\sqrt{3}=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-3\sqrt{3}\end{matrix}\right.\)
d) \(pt\Leftrightarrow\left|x-3\right|=9\Leftrightarrow\left[{}\begin{matrix}x-3=-9\\x-3=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=12\end{matrix}\right.\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
VT= \(\left(\sqrt{14}+\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{5}}\right).\sqrt{5-\sqrt{21}}\)
\(=\left(\sqrt{14}+\sqrt{6}\right).\sqrt{5-\sqrt{21}}\)
\(=\left(\sqrt{7}+\sqrt{3}\right).\sqrt{10-2\sqrt{21}}\)
\(=\left(\sqrt{7}+\sqrt{3}\right).\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=7-3=4\)