Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 97
Số lượng câu trả lời 64
Điểm GP 0
Điểm SP 8

Người theo dõi (0)

Đang theo dõi (1)


Câu trả lời:

Bài 26:
a)Để chứng minh tứ giác AMCN là hình bình hành, ta cần chứng minh rằng AM = CN và hai đường thẳng AM và CN là song song.

Vì am < cn, ta có thể kết luận rằng M nằm giữa A và B, và N nằm giữa C và D.

Gọi P là giao điểm của hai đường thẳng AM và CN.

Ta có:
AP = AM - MP
CP = CN - NP

Vì AM = CN và am < cn, nên AM - MP < CN - NP.

Do đó, AP < CP.

Từ đó, ta có thể kết luận rằng hai đường thẳng AM và CN là song song.

Vì AM = CN và hai đường thẳng AM và CN là song song, nên tứ giác AMCN là hình bình hành.

Để chứng minh tứ giác BMDN là hình bình hành, ta cần chứng minh rằng BM = DN và hai đường thẳng BM và DN là song song.

Vì AM = CN và AM < CN, nên M nằm giữa A và B, và N nằm giữa C và D.

Gọi Q là giao điểm của hai đường thẳng BM và DN.

Ta có:
BQ = BM - MQ
DQ = DN - NQ

Vì BM = DN và BM < DN, nên BM - MQ < DN - NQ.

Do đó, BQ < DQ.

Từ đó, ta có thể kết luận rằng hai đường thẳng BM và DN là song song.

Vì BM = DN và hai đường thẳng BM và DN là song song, nên tứ giác BMDN là hình bình hành.
b)
Cho hình bình hành ABCD. Lấy điểm M thuộc cạnh AB và điểm N thuộc cạnh CD sao cho AM = CN. Chứng minh rằng: (ảnh 1)

(H.3.25). a) ABCD là hình bình hành ⇒ AB // CD ⇒ AM // CN. Tứ giác AMCN có AM = CN, AM // CN ⇒ AMCN là hình bình hành.
⇒ AN = CM (hai cạnh đối của hình bình hành bằng nhau).
 AMCN là hình bình hành ⇒ˆAMC=ˆANC⇒AMC^=ANC^ (hai góc đối của hình bình hành bằng nhau).