\(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
\(x^2+4x+x+4-3\sqrt{x^2+5x+2}=6\)
\(x^2+5x+2+2-3\sqrt{x^2+5x+2}=6\)
\(x^2+5x+2-3\sqrt{x^2+5x+2}=6-2\)
\(x^2+5x+2-3\sqrt{x^2+5x+2}=4\)
Đặt \(t=x^2+5x+2\left(t\ge0\right)\), ta có:
\(t-3\sqrt{t}=4\)
\(3\sqrt{t}=t-4\)
\(9t=\left(t-4\right)^2\)
\(t^2-8t+16=9t\)
\(t^2-8t-9t+16=0\)
\(t^2-16t-t+16=0\)
\(\left(t^2-16t\right)-\left(t-16\right)=0\)
\(t\left(t-16\right)-t\left(t-16\right)=0\)
\(\left(t-16\right)\left(t-1\right)=0\)
\(t-16=0;t-1=0\)
*) \(t-16=0\)
\(t=16\) (nhận)
\(\Rightarrow x^2+5x+2=16\)
\(x^2+5x+2-16=0\)
\(x^2+5x-14=0\)
\(x^2+7x-2x-14=0\)
\(\left(x^2+7x\right)-\left(2x+14\right)=0\)
\(x\left(x+7\right)-2\left(x+7\right)=0\)
\(\left(x+7\right)\left(x-2\right)=0\)
\(x+7=0;x-2=0\)
**) \(x+7=0\)
\(x=-7\)
**) \(x-2=0\)
\(x=2\)
*) \(t-1=0\)
\(t=1\) (nhận)
\(\Rightarrow x^2+5x+2=1\)
\(x^2+5x+2-1=0\)
\(x^2+5x+1=0\) (1)
\(\Delta=5^2-4.1.1=21>0\)
Phương trình (1) có hai nghiệm phân biệt:
\(x_1=\dfrac{-5+\sqrt{21}}{2}\)
\(x_2=\dfrac{-5-\sqrt{21}}{2}\)
Vậy \(S=\left\{-7;\dfrac{-5-\sqrt{21}}{2};\dfrac{-5+\sqrt{21}}{2};2\right\}\)