a) \(A=\sqrt{5-2\sqrt{6}}-\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{\dfrac{10-4\sqrt{6}}{2}}-\sqrt{\dfrac{10+4\sqrt{6}}{2}}\)
\(=\sqrt{\dfrac{4-4\sqrt{6}+6}{2}}-\sqrt{\dfrac{4+4\sqrt{6}+6}{2}}\)
\(=\sqrt{\dfrac{2^2-2.2\sqrt{6}+\left(\sqrt{6}\right)^2}{2}}-\sqrt{\dfrac{2^2+2.2\sqrt{6}+\left(\sqrt{6}\right)^2}{2}}\)
\(=\sqrt{\dfrac{\left(2-\sqrt{6}\right)^2}{2}}-\sqrt{\dfrac{\left(2+\sqrt{6}\right)^2}{2}}\)
\(=\dfrac{\left|2-\sqrt{6}\right|}{\sqrt{2}}-\dfrac{\left|2+\sqrt{6}\right|}{\sqrt{2}}\)
\(=\dfrac{\sqrt{6}-2}{\sqrt{2}}-\dfrac{2+\sqrt{6}}{\sqrt{2}}\) (vì \(2-\sqrt{6}< 0,\) \(2+\sqrt{6}>0\))
\(=\dfrac{\sqrt{6}-2-2-\sqrt{6}}{\sqrt{2}}\)
\(=\dfrac{-4}{\sqrt{2}}\)
\(=-2\sqrt{2}\)
b) \(B=\sqrt{\left(5x\right)^2}+\sqrt{36x^2}-\sqrt{\left(-7x\right)^2}\)
\(=\sqrt{\left(5x\right)^2}+\sqrt{\left(6x\right)^2}-\sqrt{\left(-7x\right)^2}\)
\(=\left|5x\right|+\left|6x\right|-\left|-7x\right|\)
\(=5x+6x-7x\) (vì \(x\ge0\))
\(=4x\)
c) \(C=3-x+\sqrt{x^2-4x+4}\)
\(=3-x+\sqrt{\left(x-2\right)^2}\)
\(=3-x+\left|x-2\right|\)
\(=3-x+2-x\) (vì \(x\le2\) nên \(x-2\le0\))
\(=5-2x\)