HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Điều kiện xác định: \(\left\{{}\begin{matrix}25-x^2\ge0\\15-x^2\ge0\end{matrix}\right.\Leftrightarrow-\sqrt{15}\le x\le\sqrt{15}\)
\(\sqrt{25-x^2}-\sqrt{15-x^2}=-2\)
\(\Leftrightarrow\sqrt{25-x^2}+2=\sqrt{15-x^2}\)
\(\Leftrightarrow\left(\sqrt{25-x^2}+2\right)^2=\left(\sqrt{15-x^2}\right)^2\)
\(\Leftrightarrow25-x^2+4\sqrt{25-x^2}+4=15-x^2\)
\(\Leftrightarrow14+4\sqrt{25-x^2}=0\)
Vì \(14+4\sqrt{25-x^2}\ge14\) nên phương trình đã cho vô nghiệm.
Theo giả thiết, ta có:
- \(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\Rightarrow x^3=\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)^3\)
\(=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{9+4\sqrt{5}}.\sqrt[3]{9-4\sqrt{5}}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\)
\(=18+3\sqrt[3]{81-80}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\)
\(=18+3.\sqrt[3]{1}.x\)
\(=18+3x\)
- \(y=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
\(\Rightarrow y^3=\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^3\)
\(=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{3+2\sqrt{2}}.\sqrt[3]{3-2\sqrt{2}}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)
\(=6+3\sqrt[3]{9-8}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)
\(=6+3\sqrt[3]{1}.y\)
\(=6+3y\)
Do đó: \(P=x^3+y^3-3\left(x+y\right)+1993\)
\(=18+3x+6+3y-3x-3y+1993\)
\(=2017\)
The test was being done at 3pm yesterday.
56 từ
1. was => were
2. had => have
3. worked => work
4. you didn't => didn't you
5. hated => hate
6. be => bỏ
7. readed => read
8. did go => went
a) \(A=\sqrt{4x+20}-2\sqrt{x+5}+\sqrt{9x+45}\)
\(=\sqrt{4\left(x+5\right)}-2\sqrt{x+5}+\sqrt{9\left(x+5\right)}\)
\(=2\sqrt{x+5}-2\sqrt{x+5}+3\sqrt{x+5}\)
\(=3\sqrt{x+5}\)
b) Để A = 6 thì \(3\sqrt{x+5}=6\Leftrightarrow\sqrt{x+5}=2\Leftrightarrow x+5=4\Leftrightarrow x=-1\) (nhận)
Vậy với x = -1 thì A = 6.
Điều kiện xác định: \(\left\{{}\begin{matrix}x-2000\ge0\\y-2001\ge0\\z-2002\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2000\\y\ge2001\\z\ge2002\end{matrix}\right.\)
\(\sqrt{x-2000}+\sqrt{y-2001}+\sqrt{z-2002}=\dfrac{1}{2}\left(x+y+z\right)-3000\)
\(\Leftrightarrow2\sqrt{x-2000}+2\sqrt{y-2001}+2\sqrt{z-2002}=\left(x+y+z\right)-6000\)
\(\Leftrightarrow\left(x-2000-2\sqrt{x-2000}+1\right)+\left(y-2001-2\sqrt{y-2001}+1\right)+\left(z-2002-2\sqrt{z-2002}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{x-2000}-1\right)^2=0\\\left(\sqrt{y-2001}-1\right)^2=0\\\left(\sqrt{z-2002}-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2000}-1=0\\\sqrt{y-2001}-1=0\\\sqrt{z-2002}-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2000}=1\\\sqrt{y-2001}=1\\\sqrt{z-2002}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2000=1\\y-2001=1\\z-2002=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2001\\y=2002\\z=2003\end{matrix}\right.\) (nhận)
Vậy \(\left(x;y;z\right)=\left(2001;2002;2003\right)\) là nghiệm của phương trình.
13. beauty
14. introduce
15. famous
16. different
17. industry
18. compulsory
31. Singapore is one of the countries of Association of South East Asian Nations.
32. What were you doing when the mailman came to your house?
19. B
20. A
21. C
22. D
23. A
24. D
1. B
2. C
3. A
4. A
5. D
6. A
7. B
8. C
9. C
10. D