Bài 1:
a) \(A=x^2-12x+2\)
\(=\left(x^2-12x+36\right)-34\)
\(=\left(x-6\right)^2-34\ge-34\)
Dấu bằng xảy ra \(\Leftrightarrow x=6\)
Vậy \(MinA=-34\Leftrightarrow x=6\)
b) \(B=x^2-6\ge-6\)
Dấu bằng xảy ra \(\Leftrightarrow x=0\)
Vậy \(MinB=-6\Leftrightarrow x=0\)
c) \(C=5x^2+15x+8\)
\(=5\left(x^2+3x+\dfrac{8}{5}\right)\)
\(=5\left[\left(x^2+2.\dfrac{3}{2}x+\dfrac{9}{4}\right)+\dfrac{8}{5}-\dfrac{9}{4}\right]\)
\(=5\left[\left(x+\dfrac{3}{2}\right)^2-\dfrac{13}{20}\right]\)
\(=5\left(x+\dfrac{3}{2}\right)^2-\dfrac{13}{4}\ge-\dfrac{13}{4}\)
Dấu bằng xảy ra \(\Leftrightarrow x=-\dfrac{3}{2}\)
Vậy \(MinC=-\dfrac{13}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
d) \(D=2x^2+6x-1\)
\(=2\left(x^2+3x-\dfrac{1}{2}\right)\)
\(=2\left[\left(x^2+2.\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{11}{4}\right]\)
\(=2\left[\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}\right]\)
\(=2\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{2}\ge-\dfrac{11}{2}\)
Dấu bằng xảy ra \(\Leftrightarrow x=-\dfrac{3}{2}\)
Vậy \(MinD=-\dfrac{11}{2}\Leftrightarrow x=-\dfrac{3}{2}\)
e) \(E=4x^2-4x+4\)
\(=\left(4x^2-4x+1\right)+3\)
\(=\left(2x-1\right)^2+3\ge3\)
Dấu bằng xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(MinE=3\Leftrightarrow x=\dfrac{1}{2}\)
f) \(F=8x^2-24x-6\)
\(=8\left(x^2-3x-\dfrac{3}{4}\right)\)
\(=8\left[\left(x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}\right)-3\right]\)
\(=8\left[\left(x-\dfrac{3}{2}\right)^2-3\right]\)
\(=8\left(x-\dfrac{3}{2}\right)^2-24\ge-24\)
Dấu bằng xảy ra \(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy \(MinF=-24\Leftrightarrow x=\dfrac{3}{2}\)