Sửa đề: \(\sqrt{5x^3+3x^2+3x-2}=\dfrac{x^2}{2}+3x-\dfrac{1}{2}\) \(\left(1\right)\)
Điều kiện: \(5x^3+3x^2+3x-2\ge0\Leftrightarrow x\ge\dfrac{2}{5}\)
\(\left(1\right)\Leftrightarrow2\sqrt{5x^3+3x^2+3x-2}=x^2+6x-1\)
\(\Leftrightarrow2\sqrt{\left(5x^3-2x^2\right)+\left(5x^2-2x\right)+\left(5x-2\right)}=x^2+6x-1\)
\(\Leftrightarrow2\sqrt{x^2\left(5x-2\right)+x\left(5x-2\right)+\left(5x-2\right)}=x^2+x+5x+1-2\)
\(\Leftrightarrow2\sqrt{\left(x^2+x+1\right)\left(5x-2\right)}=\left(x^2+x+1\right)+\left(5x-2\right)\)
\(\Leftrightarrow\left(x^2+x+1\right)-2\sqrt{\left(x^2+x+1\right)\left(5x-2\right)}+\left(5x-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+x+1}-\sqrt{5x-2}\right)^2=0\)
\(\Leftrightarrow\sqrt{x^2+x+1}-\sqrt{5x-2}=0\)
\(\Leftrightarrow\sqrt{x^2+x+1}=\sqrt{5x-2}\)
\(\Leftrightarrow x^2+x+1=5x-2\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x^2-3x\right)-\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
So với điều kiện thấy thỏa mãn.
Vậy phương trình có tập nghiệm là: \(S=\left\{1;3\right\}.\)