HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(\dfrac{2}{3}+\dfrac{1}{3}.x^2=\left(-2\right)^0\)
\(\Leftrightarrow\dfrac{1}{3}.x^2=1-\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{1}{3}x^2=\dfrac{1}{3}\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow\left|x\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Giá 3 quyển vở là:
\(50000-11000=39000\left(đồng\right)\)
Giá mỗi quyển vở là:
\(39000:3=13000\left(đồng\right)\)
\(\left|a+b\right|\le\left|a\right|+\left|b\right|\)
\(\Leftrightarrow\left(a+b\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2\le a^2+2\left|ab\right|+b^2\)
Bình phương 2 vế em nhé, GTTĐ bình phương thì âm hay dương nó cx như nhau
n = int(input("Nhập số nguyên n:"))
if n%2 == 0:
print("Số đã nhập là số chẵn")
else:
print("Số đã nhập là số lẻ")
Câu III:
1. (Anh làm theo cách nhanh nhất thôi em nhé)
\(-x^2+4x-3=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
vậy phương trình có 2 nghiệm \(S=\left\{3;1\right\}\)
(Phần 2 anh không thấy rõ đề em nhé)
Câu II:
1. Vì đường thẳng (d) cắt trục hoành tại điểm có hoành độ bằng 2, nên đường thẳng (d) cắt trục hoành tại điểm có tọa độ (2;0)
Thay x = 2; y = 0 vào phương trình đường thẳng (d), ta được:
\(0=\left(2-m\right).2+m+1\)
\(\Leftrightarrow4-2m+m+1=0\)
\(\Leftrightarrow-m=-5\)
\(\Leftrightarrow m=5\)
Vậy nếu m = 5 thì đưởng thẳng (d) cắt trục hoành tại điểm có hoành độ bằng 2.
2. \(\left\{{}\begin{matrix}3x+2y=11\\x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=12\\x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\3-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất là (x; y) = (3; 1)
Câu I:
1. \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-3}{x-1}\left(x\ge0;x\ne1\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}-\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{x-1}+\dfrac{x-3}{x-1}\)
\(=\dfrac{x+\sqrt{x}-2x+2\sqrt{x}+x-3}{x-1}\)
\(=\dfrac{3\sqrt{x}-3}{x-1}=\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{3}{\sqrt{x}+1}\)
2. \(\dfrac{1}{P}=\dfrac{4}{3}\)
\(\Leftrightarrow\dfrac{1}{\dfrac{3}{\sqrt{x}+1}}=\dfrac{4}{3}\)
\(\Leftrightarrow\dfrac{12}{\sqrt{x}+1}=3\)
\(\Leftrightarrow3\sqrt{x}+3=12\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Leftrightarrow x=9\left(Vì.x\ge0;x\ne1\right)\)
a. Ta có: \(\widehat{BHD}=\widehat{BCD}=90^o\)
\(\Rightarrow\) BHCD là tứ giác nội tiếp
b. Xét \(2\Delta\) vuông: \(\Delta BCK\) và \(\Delta DHK\) có:
\(\left\{{}\begin{matrix}\widehat{DHK}=\widehat{BCK}=90^o\\\widehat{HKC}.chung\end{matrix}\right.\)
\(\Rightarrow\Delta BCK\sim\Delta DHK\)
\(\Rightarrow\dfrac{CK}{BC}=\dfrac{HK}{DK}\Leftrightarrow CK.DK=HK.BC\)
(1) C + 2H2 ---to,xt---> CH4
(2) CH4 + 2O2 ---to---> CO2 + 2H2O
(3) CO2 + Ca(OH)2 ----> CaCO3 + H2O
(4) CH4 + Cl2 ----> CH3Cl + HCl