Bạn sửa đề à??
\(\sqrt[3]{9-x}+\sqrt{x+3}=4\)
\(ĐK:x\ge-3\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{9-x}=t\\\sqrt{x+3}=p\end{matrix}\right.\); \(p\ge0\) \(\Rightarrow\left\{{}\begin{matrix}t^3=9-x\\p^2=x+3\end{matrix}\right.\) \(\Leftrightarrow t^3+p^2=12\)
Ta có hpt: \(\left\{{}\begin{matrix}t+p=4\\t^3+p^2=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}p=4-t\\t^3+p^2=12\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow t^3+\left(4-t\right)^2=12\)
\(\Leftrightarrow t^3+t^2-8t+16=12\)
\(\Leftrightarrow t^3+t^2-8t+4=0\)
\(\Leftrightarrow t^3-2t^2+3t^2-8t+4=0\)
\(\Leftrightarrow t^2\left(t-2\right)+\left(3t^2-6t-2t+4\right)=0\)
\(\Leftrightarrow t^2\left(t-2\right)+3t\left(t-2\right)-2\left(t-2\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t^2+3t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t^2+3t-2=0\left(3\right)\end{matrix}\right.\)
\(\left(3\right)t^2+3t-2=0\)
\(\Delta=3^2-4.\left(-2\right)=17>0\)
\(\rightarrow\left[{}\begin{matrix}t=\dfrac{-3+\sqrt{17}}{2}\\t=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
`@` TH1: \(t=2\Rightarrow p=4-2=2\left(tm\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt[3]{9-x}=2\\\sqrt{x+3}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}9-x=8\\x+3=4\end{matrix}\right.\) \(\Leftrightarrow x=1\left(tm\right)\)
`@`TH2: \(t=\dfrac{-3\pm\sqrt{17}}{2}\) \(\Rightarrow p=4-\dfrac{-3\pm\sqrt{17}}{2}=\dfrac{11\pm\sqrt{17}}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt[3]{9-x}=\dfrac{-3\pm\sqrt{17}}{2}\\\sqrt{x+3}=\dfrac{11\pm\sqrt{17}}{2}\end{matrix}\right.\) \(\Leftrightarrow x=\dfrac{63\pm11\sqrt{17}}{2}\left(tm\right)\)
Vậy \(S=\left\{1;\dfrac{63\pm11\sqrt{17}}{2}\right\}\)