`a.`\(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}+5=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Dấu "=" `<=>x=3/2`
`b.`\(A=2x^2-10x+1=2\left(x^2-5x+\dfrac{1}{2}\right)=2\left(x^2-5x+\dfrac{25}{4}\right)-\dfrac{23}{2}=\left(x-\dfrac{5}{2}\right)^2-\dfrac{23}{2}\ge-\dfrac{23}{2}\)Dấu "=" `<=>x=5/2`
`c.`\(C=\left(2x-1\right)^2+\left(x+2\right)^2=4x^2-4x+1+x^2+4x+4=5x^2+5\ge5\)
Dấu "=" `<=>x=0`
`d.`\(\left(1-3x\right)^2+\left(5y+2\right)^4-1\ge-1\)
Dấu "=" `<=>` \(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=-\dfrac{2}{5}\end{matrix}\right.\)
`e.`\(E=5x^2-10x+4xy+y^2-10=\left(4x^2+4xy+y^2\right)+\left(x^2-10x+25\right)-35=\left(2x+y\right)^2+\left(x-5\right)^2-35\ge-35\)
Dấu "=" `<=>`\(\left\{{}\begin{matrix}x=5\\y=-10\end{matrix}\right.\)
`f.`\(F=\left(x^2-7x\right)\left(x^2-7x+12\right)\)
Đặt \(x^2-7x=t\)
`=>`\(F=t\left(t+12\right)\)
\(F=t^2+12t=\left(t^2+12t+36\right)-36=\left(t+6\right)^2-36\ge-36\)
Dấu "=" xảy ra \(\Leftrightarrow t=-6\)
\(\Rightarrow x^2-7x=-6\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)