Bài 16:
\(9x^3+2x-\sqrt[3]{3x+24}-8=0\left(1\right)\)
Đặt \(u=\sqrt[3]{3x+24}\Rightarrow u^3=3x+24\). Ta có hệ phương trình:
\(\left\{{}\begin{matrix}9x^3+2x-u-8=0\\u^3=3x+24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}27x^3+6x-3u-24=0\\u^3-3x-24=0\end{matrix}\right.\)
\(\Rightarrow\left(27x^3+6x-3u-24\right)-\left(u^3-3x-24\right)=0\)
\(\Rightarrow\left(27x^3-u^3\right)+3\left(3x-u\right)=0\)
\(\Rightarrow\left(3x-u\right)\left(9x^2+3xu+u^2\right)+3\left(3x-u\right)=0\)
\(\Rightarrow\left(3x-u\right)\left(9x^2+3xu+u^2+3\right)=0\)
\(\Rightarrow3x-u=0\Rightarrow3x=u\)
\(\Rightarrow3x=\sqrt[3]{3x+24}\)
\(\Leftrightarrow27x^3=3x+24\Leftrightarrow9x^3-x-8=0\)
\(\Leftrightarrow9x^3-9x^2+9x^2-9x+8x-8=0\)
\(\Leftrightarrow9x^2\left(x-1\right)+9x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(9x^2+9x+8\right)=0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy phương trình (1) có nghiệm duy nhất là 1.