cho a+b+c=0. chứng minh rằng a3+b3+c3=3abc
cho a+b+c=0. chứng minh rằng a3+b3+c3=3abc
Ta cần CM BĐT a3+b3+c3=3abc luôn đúng với a+b+c=0
ta có \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\) \(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\) \(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\) \(\left(\left(a+b\right)+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)\)\(-3ab\left(a+b+c\right)\)=0
\(\Leftrightarrow\) \(\left(a+b+c\right)\left(\left(a+b+c\right)^2-3\left(a+b\right)c-3ab\right)\)=0(đúng vì a+b+c=0)
Vậy \(a^3+b^3+c^3=3abc\) với a+b+c=0
Cần gì phải vất vả thế!!
Giải:
Từ giả thiết \(a+b+c=0\) ta có:
\(\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(=-3ab\left(-c\right)=3abc\)
Vậy \(a^3+b^3+c^3=3abc\) (Đpcm)
a+b+c=0 => a+b=-c => (a+b)^3 = -c^3 => a^3 + b^3 +3ab(a+b) + c^3 = 0 . Vì a+b = -c => 3ab(a+b) = -3abc => a^3 +b^3 +c^3 - 3abc = 0 => a^3 +b^3 +c^3 = 3abc
tính giá trị của biểu thức B=\(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\), biết xy+yz+xz=0 và \(xyz\ne0\)
ta có : \(xy+yz+xz=0\Rightarrow\dfrac{xy+yz+xz}{xyz}=0\)
\(\Leftrightarrow\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{1}{y}=0\Rightarrow\dfrac{1}{z}=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(\Rightarrow\dfrac{1}{z^3}=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3\)
\(\Rightarrow\dfrac{1}{z^3}=-\left(\dfrac{1}{x^3}+3.\dfrac{1}{x^2}.\dfrac{1}{y}+3.\dfrac{1}{x}.\dfrac{1}{y^2}+\dfrac{1}{y^3}\right)\)
\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=-3.\dfrac{1}{x}.\dfrac{1}{y}.\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=3.\dfrac{1}{xyz}\)
Do đó : \(xyz.\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)
\(\Leftrightarrow\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=3\)
\(\Leftrightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)
Vậy giá trị của biểu thức \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)
khi chia đa thức Cx cho x-2 thì dư 4, chia cho x+5 thì dư -17 . tìm dư khi chia đa thức Cx cho x2+3x-10
chứng minh rằng a2+b2+c2\(\ge\)ab+ac+bc với mọi số a,b,c
Lại copy!!!
Giải:
Áp dụng BĐT Bunhiacopski
Xét cặp số \(\left(1,1,1\right)\) và \(\left(a,b,c\right)\) ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1.a+1.b+1.c\right)^2\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\) (Đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Chúng ta có thể dễ dàng bất đức thức này bằng vài bước suy luận cơ bản như sau:
Điều này luôn đúng nên ta có điều phải chứng minh. Đẳng thức xảy ra khi a = b = c.
Ta có \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2-2ab\ge0\)
Cộng cả hai vế của bất phương trình ta được \(a^2+b^2\ge2ab\) (1)
Tương tự ta có:
cho x,y,z là 3 số thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\) . chứng minh rằng \(\dfrac{1}{x^4}+\dfrac{1}{y^4}+\dfrac{1}{z^4}\ge\dfrac{1}{xyz}\)
cho a,b,c>0 thỏa mãn a+b+c=3. chứng minh rằng \(\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge\dfrac{3}{2}\)
\(VT=a-\dfrac{ab^2}{b^2+1}+b-\dfrac{bc^2}{c^2+1}+c-\dfrac{ca^2}{a^2+1}\)
\(VT=3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2\sqrt{b^2}=2b\\c^2+1\ge2\sqrt{c^2}=2c\\a^2+1\ge2\sqrt{a^2}=2a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab^2}{b^2+1}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\\\dfrac{bc^2}{c^2+1}\le\dfrac{bc^2}{2c}=\dfrac{bc}{2}\\\dfrac{ca^2}{a^2+1}\le\dfrac{ca^2}{2a}=\dfrac{ca}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{ab+bc+ca}{2}\)
\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge3-\dfrac{ab+bc+ca}{2}\) ( 1 )
Theo hệ quả của bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow3\ge ab+bc+ca\)
\(\Rightarrow\dfrac{3}{2}\ge\dfrac{ab+bc+ca}{2}\)
\(\Rightarrow\dfrac{3}{2}\le3-\dfrac{ab+bc+ca}{2}\) ( 2 )
Từ (1) và (2)
\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge\dfrac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
cho a nhỏ hơn hoặc bàng 3. tính S= a + 1/a
\(S=a+\dfrac{1}{a}=a+\dfrac{a}{9}+\dfrac{8a}{9}\\ S\ge2\sqrt{\dfrac{1}{a}.\dfrac{a}{9}}+\dfrac{8a}{9}\\ S\ge2\sqrt{\dfrac{1}{a}.\dfrac{a}{9}}+\dfrac{24}{9}\\ S\ge\dfrac{10}{3}\)
đẳng thức xảy ra khi \(\dfrac{1}{a}=\dfrac{a}{9}\Rightarrow a=3\)
vậy MINS=\(\dfrac{10}{3}\)tại x=3
Cho 3 số x,y,z nguyên dương thỏa mãn x+y+z=1998 và 2x+3y+4z=5992 và x>y>z>663.
Tìm 3 số x,y,z thỏa mãn điều kiện trên.
Các bạn giải chi tiết giúp mình nha.
Tiện thể bạn nào thi violympic Toán Tiếng Anh cho mk lm wen lun nha có gì trao đổi giúp đỡ nhau.....
ta có x+y+z=1998 (1) => x=1998-y-z (3)
2x+3y+4z=5992 (2) <=> 2(1998-y-z)+3y+4z=5992
=>y=1996-2z
thay vào (3) ta có
x=2+z
ta có
x>y>z <=> z+2>y>z
mà x,y,z là số nguyên dương
=>y=z+1
thay trở lại (1), ta có: 3z=1995<=>z=655 =>y=656,x=657(thõa mãn x>y>z>663)
Chứng minh rằng với mọi số nguyên dương N ta có A=52n+5n-6n(3n+2n)là bội số của 91
Rút gọn phân thức :
\(\dfrac{x-2}{x+1}.\dfrac{x^2-2x-3}{x^2-5x+6}\)
\(\dfrac{x-2}{x+1}.\dfrac{x^2-2x-3}{x^2-5x+6}=\dfrac{x-2}{x+1}.\dfrac{\left(x-1\right)^2-2^2}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{\left(x-2\right)\left(x-3\right)\left(x+1\right)}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}=1\)