Bài 7: Phép nhân các phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vịtt Tên Hiền
Xem chi tiết
Nguyễn Tấn Dũng
1 tháng 4 2017 lúc 22:41

Ta cần CM BĐT a3+b3+c3=3abc luôn đúng với a+b+c=0

ta có \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\) \(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\) \(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\) \(\left(\left(a+b\right)+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)\)\(-3ab\left(a+b+c\right)\)=0

\(\Leftrightarrow\) \(\left(a+b+c\right)\left(\left(a+b+c\right)^2-3\left(a+b\right)c-3ab\right)\)=0(đúng vì a+b+c=0)

Vậy \(a^3+b^3+c^3=3abc\) với a+b+c=0

Hoang Hung Quan
2 tháng 4 2017 lúc 10:43

Cần gì phải vất vả thế!!

Giải:

Từ giả thiết \(a+b+c=0\) ta có:

\(\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

\(=-3ab\left(-c\right)=3abc\)

Vậy \(a^3+b^3+c^3=3abc\) (Đpcm)

quỳnh trang
3 tháng 9 2017 lúc 10:51

a+b+c=0 => a+b=-c => (a+b)^3 = -c^3 => a^3 + b^3 +3ab(a+b) + c^3 = 0 . Vì a+b = -c => 3ab(a+b) = -3abc => a^3 +b^3 +c^3 - 3abc = 0 => a^3 +b^3 +c^3 = 3abc

Vịtt Tên Hiền
Xem chi tiết
Hai Binh
6 tháng 4 2017 lúc 9:20

ta có : \(xy+yz+xz=0\Rightarrow\dfrac{xy+yz+xz}{xyz}=0\)

\(\Leftrightarrow\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{1}{y}=0\Rightarrow\dfrac{1}{z}=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\dfrac{1}{z^3}=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3\)

\(\Rightarrow\dfrac{1}{z^3}=-\left(\dfrac{1}{x^3}+3.\dfrac{1}{x^2}.\dfrac{1}{y}+3.\dfrac{1}{x}.\dfrac{1}{y^2}+\dfrac{1}{y^3}\right)\)

\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=-3.\dfrac{1}{x}.\dfrac{1}{y}.\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=3.\dfrac{1}{xyz}\)

Do đó : \(xyz.\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)

\(\Leftrightarrow\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=3\)

\(\Leftrightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

Vậy giá trị của biểu thức \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

Vịtt Tên Hiền
Xem chi tiết
Vịtt Tên Hiền
Xem chi tiết
Hoang Hung Quan
2 tháng 4 2017 lúc 10:32

Lại copy!!!

Giải:

Áp dụng BĐT Bunhiacopski

Xét cặp số \(\left(1,1,1\right)\)\(\left(a,b,c\right)\) ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1.a+1.b+1.c\right)^2\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\) (Đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

qwerty
2 tháng 4 2017 lúc 8:27


Chúng ta có thể dễ dàng bất đức thức này bằng vài bước suy luận cơ bản như sau:

Chứng minh bất đẳng thức: a2 + b2 + c2 ≥ ab + bc + ca

Điều này luôn đúng nên ta có điều phải chứng minh. Đẳng thức xảy ra khi a = b = c.

F.C
6 tháng 4 2017 lúc 13:39

Ta có \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2-2ab\ge0\)

Cộng cả hai vế của bất phương trình ta được \(a^2+b^2\ge2ab\) (1)

Tương tự ta có:

Vịtt Tên Hiền
Xem chi tiết
Vịtt Tên Hiền
Xem chi tiết
Kuro Kazuya
2 tháng 4 2017 lúc 13:45

\(VT=a-\dfrac{ab^2}{b^2+1}+b-\dfrac{bc^2}{c^2+1}+c-\dfrac{ca^2}{a^2+1}\)

\(VT=3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2\sqrt{b^2}=2b\\c^2+1\ge2\sqrt{c^2}=2c\\a^2+1\ge2\sqrt{a^2}=2a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab^2}{b^2+1}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\\\dfrac{bc^2}{c^2+1}\le\dfrac{bc^2}{2c}=\dfrac{bc}{2}\\\dfrac{ca^2}{a^2+1}\le\dfrac{ca^2}{2a}=\dfrac{ca}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{ab+bc+ca}{2}\)

\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge3-\dfrac{ab+bc+ca}{2}\) ( 1 )

Theo hệ quả của bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow3\ge ab+bc+ca\)

\(\Rightarrow\dfrac{3}{2}\ge\dfrac{ab+bc+ca}{2}\)

\(\Rightarrow\dfrac{3}{2}\le3-\dfrac{ab+bc+ca}{2}\) ( 2 )

Từ (1) và (2)

\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge\dfrac{3}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=1\)

le thi thuy trang
Xem chi tiết
Không Tên
5 tháng 4 2017 lúc 21:06

a lớn hơn hoặc bằng 3 chứ bạn!!!

Không Tên
5 tháng 4 2017 lúc 21:32

\(S=a+\dfrac{1}{a}=a+\dfrac{a}{9}+\dfrac{8a}{9}\\ S\ge2\sqrt{\dfrac{1}{a}.\dfrac{a}{9}}+\dfrac{8a}{9}\\ S\ge2\sqrt{\dfrac{1}{a}.\dfrac{a}{9}}+\dfrac{24}{9}\\ S\ge\dfrac{10}{3}\)

đẳng thức xảy ra khi \(\dfrac{1}{a}=\dfrac{a}{9}\Rightarrow a=3\)

vậy MINS=\(\dfrac{10}{3}\)tại x=3

Joen Jungkook
Xem chi tiết
Phan Thế Nghĩa
8 tháng 4 2017 lúc 12:32

ta có x+y+z=1998 (1) => x=1998-y-z (3)

2x+3y+4z=5992 (2) <=> 2(1998-y-z)+3y+4z=5992

=>y=1996-2z

thay vào (3) ta có

x=2+z

ta có

x>y>z <=> z+2>y>z

mà x,y,z là số nguyên dương

=>y=z+1

thay trở lại (1), ta có: 3z=1995<=>z=655 =>y=656,x=657(thõa mãn x>y>z>663)

le cong tuan
Xem chi tiết
Nghiêm Thái Văn
Xem chi tiết
๖ۣۜĐặng♥๖ۣۜQuý
8 tháng 7 2017 lúc 20:06

\(\dfrac{x-2}{x+1}.\dfrac{x^2-2x-3}{x^2-5x+6}=\dfrac{x-2}{x+1}.\dfrac{\left(x-1\right)^2-2^2}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{\left(x-2\right)\left(x-3\right)\left(x+1\right)}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}=1\)

Kookie Jung
8 tháng 7 2017 lúc 20:24

dễ mà