Cho tam giác ABC có: \(\widehat A = 42^\circ ,\widehat B = 37^\circ \).
a) Tính \(\widehat C\).
b) So sánh độ dài các cạnh AB, BC, CA.
Cho tam giác ABC có: \(\widehat A = 42^\circ ,\widehat B = 37^\circ \).
a) Tính \(\widehat C\).
b) So sánh độ dài các cạnh AB, BC, CA.
Tìm các số đo x, y trong Hình 140.
Thảo luận (1)Hướng dẫn giảiTam giác ABO là tam giác đều nên \(\widehat {ABO} = \widehat {AOB} = \widehat {BAO} = 60^\circ \). Vậy \(x = 60^\circ \).
Ba điểm B, O, C thẳng hàng nên \(\widehat {BOC} = 180^\circ \). Mà \(\widehat {AOB} = 60^\circ \)nên \(\widehat {AOC} = 180^\circ - 60^\circ = 120^\circ \).
Xét tam giác AOC có OA = OC. Vậy tam giác AOC cân tại O nên \(\widehat{OAC} = \widehat{OCA} =\dfrac{1}{2}. (180^0-\widehat{AOC})= \dfrac{1}{2}.(180^\circ - 120^\circ ) = 30^\circ \)
Hay \(y = 30^\circ \).
Vậy \(x = 60^\circ \); \(y = 30^\circ \).
(Trả lời bởi Hà Quang Minh)
Bạn Hoa đánh dấu ba vị trí A, B, C trên một phần sơ đồ xe buýt ở Hà Nội năm 2021 và xem xe buýt có thể đi như thế nào giữa hai vị trí A và B. Đường thứ nhất đi từ A đến C và đi tiếp từ C đến B, đường thứ hai đi từ B đến A (Hình 141). Theo em, đường nào đi dài hơn? Vì sao?
Thảo luận (1)Hướng dẫn giảiXét tam giác ABC có: \(AC + CB > AB\).
Vậy nên bạn Hoa đi đường thứ nhất đi từ A đến C và đi tiếp từ C đến B sẽ dài hơn đi đường thứ hai đi từ B đến A.
(Trả lời bởi Hà Quang Minh)
Cho hai tam giác ABC và MNP có: AB = MN, BC = NP, CA = PM. Gọi I và K lần lượt là trung điểm của BC và NP. Chứng minh AI = MK.
Thảo luận (1)Hướng dẫn giảiHai tam giác ABC và MNP có: AB = MN, BC = NP, CA = PM nên \(\Delta ABC = \Delta MNP\)(c.c.c)
Suy ra: \(\widehat {ABI} = \widehat {MNK}\) ( 2 góc tương ứng).
Ta có: I, K lần lượt là trung điểm của BC và NP mà BC = NP, suy ra: \(BI = NK\).
Xét tam giác ABI và tam giác MNK có:
AB = MN;
\(\widehat {ABI} = \widehat {MNK}\);
BI = NK.
Vậy \(\Delta ABI = \Delta MNK\)(c.g.c). Suy ra: AI = MK (2 cạnh tương ứng).
Vậy AI = MK.
(Trả lời bởi Kiều Sơn Tùng)
Cho Hình 142 có O là trung điểm của đoạn thẳng AB và O nằm giữa hai điểm M, N. Chứng minh:
a) Nếu OM = ON thì AM // BN;
b) Nếu AM // BN thì OM = ON.
Thảo luận (1)Hướng dẫn giảia) Xét tam giác AOM và tam giác BON có:
OA = OB;
\(\widehat {AOM} = \widehat {BON}\)(đối đỉnh);
OM = ON.
Vậy \(\Delta AOM = \Delta BON\)(c.g.c).
Suy ra: \(\widehat {AMO} = \widehat {BNO}\) (2 góc tương ứng).
Mà hai góc này ở vị trí so le trong nên AM // BN.
b) Ta có: AM // BN nên \(\widehat {MAO} = \widehat {NBO}\)(hai góc so le trong).
Xét tam giác AOM và tam giác BON có:
\(\widehat {MAO} = \widehat {NBO}\)
OA = OB;
\(\widehat {AOM} = \widehat {BON}\)(đối đỉnh);
Vậy \(\Delta AOM = \Delta BON\)(g.c.g). Suy ra: OM = ON ( 2 cạnh tương ứng).
(Trả lời bởi Hà Quang Minh)
Cho tam giác ABC cân tại A có \(\widehat {ABC} = 70^\circ \). Hai đường cao BD và CE cắt nhau tại H.
a) Tính số đo các góc còn lại của tam giác ABC.
b) Chứng minh BD = CE.
c) Chứng minh tia AH là tia phân giác của góc BAC.
Thảo luận (1)Hướng dẫn giảia) Tam giác ABC cân tại A nên: \(\widehat {ABC} = \widehat {ACB} = 70^\circ \).
Tổng ba góc trong một tam giác bằng 180° nên: \(\widehat {BAC} = 180^\circ - 70^\circ - 70^\circ = 40^\circ \).
b) Xét tam giác vuông ADB và tam giác vuông AEC có:
AB = AC (tam giác ABC cân);
\(\widehat A\) chung.
Vậy \(\Delta ADB = \Delta AEC\)(cạnh huyền – góc nhọn). Suy ra: BD = CE ( 2 cạnh tương ứng).
c) Trong tam giác ABC có H là giao điểm của hai đường cao BD và CE nên H là trực tâm trong tam giác ABC hay AF vuông góc với BC.
Xét hai tam giác vuông AFB và AFC có:
AB = AC (tam giác ABC cân);
AF chung.
Vậy \(\Delta AFB = \Delta AFC\)(cạnh huyền – cạnh góc vuông). Suy ra: \(\widehat {FAB} = \widehat {FAC}\) ( 2 góc tương ứng) hay \(\widehat {BAH} = \widehat {CAH}\).
Vậy tia AH là tia phân giác của góc BAC.
(Trả lời bởi Kiều Sơn Tùng)
Cho hai tam giác nhọn ABC và ECD, trong đó ba điểm B, C, D thẳng hàng. Hai đường cao BM và CN của tam giác ABC cắt nhau tại I, hai đường cao CP và DQ của tam giác ECD cắt nhau tại K (Hình 143). Chứng minh AI // EK.
Thảo luận (1)Hướng dẫn giảiTa có:
I là giao điểm của hai đường cao BM, CN trong tam giác ABC. Suy ra I là trực tâm của tam giác ABC. Vậy \(AI \bot BC\). (1)
K là giao điểm của hai đường cao DQ, CP trong tam giác CED. Suy ra K là trực tâm của tam giác CED.
Vậy \(EK \bot CD\). (2)
Mà ba điểm B, C, D thẳng hàng. (3)
Từ (1), (2) và (3) suy ra: AI // EK.
(Trả lời bởi Hà Quang Minh)
Cho tam giác ABC có O là giao điểm của ba đường trung trực. Qua các điểm A, B, C lần lượt kẻ các đường thẳng vuông góc với OA, OB, OC, hai trong ba đường đó lần lượt cắt nhau tại M, N, P (Hình 144). Chứng minh:
a) \(\Delta OMA = \Delta OMB\) và tia MO là tia phân giác của góc NMP;
b) O là giao điểm của ba đường phân giác của tam giác MNP.
Thảo luận (1)Hướng dẫn giảia) O là giao điểm của ba đường trung trực của tam giác ABC nên O cách đều ba đỉnh của tam giác đó hay OA = OB = OC.
Xét hai tam giác vuông OAM và OBM có:
OA = OB;
OM chung.
Vậy \(\Delta OAM = \Delta OBM\)(cạnh huyền – cạnh góc vuông).
Suy ra: \(\widehat {OMA} = \widehat {BMO}\) ( 2 góc tương ứng).
Vậy MO là tia phân giác của góc BMA hay MO là tia phân giác của góc NMP (ba điểm M, A, P thẳng hàng và ba điểm M, B, N thẳng hàng).
b) MO là tia phân giác của góc NMP.
Tương tự ta có:
NO là tia phân giác của góc MNP.
PO là tia phân giác của góc MPN.
Vậy O là giao điểm của ba đường phân giác MO, NO, PO của tam giác MNP.
(Trả lời bởi Hà Quang Minh)
Cho tam giác ABC có G là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực. Các điểm A, G, H, I, O phân biệt. Chứng minh rằng:
a) Nếu tam giác ABC cân tại A thì các điểm A, G, H, I, O cùng nằm trên một đường thẳng;
b) Nếu các điểm A, H, I cùng nằm trên một đường thẳng thì tam giác ABC cân tại A.
Thảo luận (1)Hướng dẫn giảia)
Trong tam giác ABC cân tại A có AD là đường trung tuyến.
Xét tam giác ABD và tam giác ACD có:
AB = AC (tam giác ABC cân);
AD chung;
BD = DC (D là trung điểm của BC).
Vậy \(\Delta ABD = \Delta ACD\)(c.c.c.). Suy ra: \(\widehat {ADB} = \widehat {ADC} = 90^\circ \) (vì ba điểm B, D, C thẳng hàng); \(\widehat {BAD} = \widehat {CAD}\).
Vậy AD là đường cao của tam giác và đường phân giác của góc A.
Suy ra: AD là đường trung trực của tam giác ABC.
Vậy AD là đường trung tuyến, đường cao, đường phân giác, đường trung trực của tam giác ABC.
Mà G là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực nên A, G, H, I, O cùng nằm trên một đường thẳng.
Vậy nếu tam giác ABC cân tại A thì các điểm A, G, H, I, O cùng nằm trên một đường thẳng.
b)
Ta có: \(AD \bot BC\).
H là trực tâm của tam giác ABC nên A, H, D thẳng hàng.
Mà A, H, I thẳng hàng nên A, H, I, K thẳng hàng.
Suy ra: AD là tia phân giác của góc BAC (Vì AI là tia phân giác của góc BAC).
Nên \(\widehat {BAD} = \widehat {CAD}\).
Xét tam giác BAD và tam giác CAD có:
\(\widehat {BAD} = \widehat {CAD}\);
AD chung;
\(\widehat {ADB} = \widehat {ADC}\) (\(AD \bot BC\)).
\(\Rightarrow \Delta ABD = \Delta ACD\)(g.c.g). Suy ra: AB = AC ( 2 cạnh tương ứng).
Do đó, tam giác ABC cân tại A
Vậy nếu các điểm A, H, I cùng nằm trên một đường thẳng thì tam giác ABC cân tại A.
(Trả lời bởi Kiều Sơn Tùng)
Bạn Hoa vẽ tam giác ABC lên tờ giấy sau đó cắt một phần tam giác ở phía góc A (Hình 145). Bạn Hoa đố bạn Hùng: Không vẽ điểm A, làm thế nào tìm được điểm D trên đường thẳng BC sao cho khoảng cách từ D đến điểm A là nhỏ nhất? Em hãy giúp bạn Hùng tìm cách vẽ điểm D và giải thích cách làm của mình?
Thảo luận (1)Hướng dẫn giảiTrong tam giác, đường có độ dài ngắn nhất luôn là đường cao (đường vuông góc).
Vậy: khoảng cách từ D đến điểm A là nhỏ nhất khi \(AD \bot BC\).
Bước 1: Vẽ hai đường cao hạ từ đỉnh B và C.
Bước 2: Gọi H là giao điểm của hai đường cao.
Bước 3: Vẽ đường cao hạ từ H xuống BC. Và giao điểm của đường cao hạ từ H với đoạn thẳng BC là điểm D ta cần tìm.
(Trả lời bởi Kiều Sơn Tùng)