Biết \({4^\alpha } + {4^{ - \alpha }} = 5\).
Tính giá trị của các biểu thức:
a) \({2^\alpha } + {2^{ - \alpha }}\);
b) \({4^{2\alpha }} + {4^{ - 2\alpha }}\).
Biết \({4^\alpha } + {4^{ - \alpha }} = 5\).
Tính giá trị của các biểu thức:
a) \({2^\alpha } + {2^{ - \alpha }}\);
b) \({4^{2\alpha }} + {4^{ - 2\alpha }}\).
Tính giá trị của các biểu thức:
a) \(log_272-\dfrac{1}{2}\left(log_23+log_227\right)\);
b) \(5^{log_240-log_25}\);
c) \(3^{2+log_92}\).
Thảo luận (1)Hướng dẫn giải\(a,log_272-\dfrac{1}{2}\left(log_23+log_227\right)\\ =log_272-\dfrac{1}{2}log_2\left(3\cdot27\right)\\ =log_272-log_2\left(81\right)^{\dfrac{1}{2}}\\ =log_272-log_29\\ =log_2\dfrac{72}{9}\\ =log_28\\ =3\)
\(b,5^{log_240-log_25}\\ =5^{log_2\dfrac{40}{5}}\\ =5^{log_28}\\ =5^3\\ =125\)
\(c,3^{2+log_92}\\ =3^{log_9\left(81\cdot2\right)}\\ =3^{\dfrac{1}{2}log_3162}\\ =\left(162\right)^{\dfrac{1}{2}}\\ =\sqrt{162}\\ =9\sqrt{2}\)
(Trả lời bởi Hà Quang Minh)
Biết rằng \({5^x} = 3\) và \({3^y} = 5\).
Không sử dụng máy tính cầm tay, tính giá trị của \(xy\).
Thảo luận (1)Hướng dẫn giải\(5^x=3\Leftrightarrow x=log_53\\ 3^y=5\Leftrightarrow y=log_35\\ \Rightarrow xy=log_53\cdot log_35=1\)
(Trả lời bởi Hà Quang Minh)
Viết công thức biểu thị \(y\) theo \(x\), biết \(2{\log _2}y = 2 + \frac{1}{2}{\log _2}x\).
Thảo luận (1)Hướng dẫn giải\(2log_2y=2+\dfrac{1}{2}log_2x\)
=>\(log_2y^2=log_22^2+log_2x^{\dfrac{1}{2}}\)
=>\(log_2y^2=log_2\left(2^2\cdot x^{\dfrac{1}{2}}\right)\)
=>\(y^2=4\cdot x^{\dfrac{1}{2}}=4\sqrt{x}\)
(Trả lời bởi Nguyễn Lê Phước Thịnh)
Giải các phương trình sau:
a) \({\left( {\frac{1}{4}} \right)^{x - 2}} = \sqrt 8 \);
b) \({9^{2x - 1}} = {81.27^x}\);
c) \(2{\log _5}\left( {x - 2} \right) = {\log _5}9\);
d) \({\log _2}\left( {3{\rm{x}} + 1} \right) = 2 - {\log _2}\left( {x - 1} \right)\).
Thảo luận (2)Hướng dẫn giải\(a,\left(\dfrac{1}{4}\right)^{x-2}=\sqrt{8}\\ \Leftrightarrow\left(\dfrac{1}{2}\right)^{2x-4}=\left(\dfrac{1}{2}\right)^{-\dfrac{3}{2}}\\ \Leftrightarrow2x-4=-\dfrac{3}{2}\\ \Leftrightarrow2x=\dfrac{5}{2}\\ \Leftrightarrow x=\dfrac{5}{4}\)
\(b,9^{2x-1}=81\cdot27^x\\ \Leftrightarrow3^{4x-2}=3^{4+3x}\\ \Leftrightarrow4x-2=4+3x\\ \Leftrightarrow x=6\)
(Trả lời bởi Hà Quang Minh)
a) \(\left(\dfrac{1}{9}\right)^{x+1}>\dfrac{1}{81}\);
b) \(\left(\sqrt[4]{3}\right)^x\le27.3^x\);
c) \(log_2\left(x+1\right)\le log_2\left(2-4x\right)\).
Thảo luận (1)Hướng dẫn giải\(a,\left(\dfrac{1}{9}\right)^{x+1}>\dfrac{1}{81}\\ \Leftrightarrow\left(\dfrac{1}{9}\right)^{x+1}>\left(\dfrac{1}{9}\right)^2\\ \Leftrightarrow x+1< 2\\ \Leftrightarrow x< 1\)
\(b,\left(\sqrt[4]{3}\right)^x\le27\cdot3^x\\ \Leftrightarrow3^{\dfrac{x}{4}}\le3^{x+3}\\ \Leftrightarrow\dfrac{x}{4}\le3=x\\ \Leftrightarrow-\dfrac{3}{4}x\le3\\ \Leftrightarrow x\ge-4\)
c, ĐK: \(\left\{{}\begin{matrix}x+1>0\\2-4x>0\end{matrix}\right.\Leftrightarrow-1< x< \dfrac{1}{2}\)
\(log_2\left(x+1\right)\le log_2\left(2-4x\right)\\ \Leftrightarrow x+1\le2-4x\\ \Leftrightarrow5x\le1\\ \Leftrightarrow x\le\dfrac{1}{5}\)
Kết hợp với ĐKXĐ, ta được: \(-1< x\le\dfrac{1}{5}\)
(Trả lời bởi Hà Quang Minh)
Thực hiện một mẻ nuôi cấy vi khuẩn với 1000 vi khuẩn ban đầu, nhà sinh học phát hiện ra số lượng vi khuẩn tăng thêm 25% sau mỗi hai ngày.
a) Công thức \(P\left( t \right) = {P_0}.{a^t}\) cho phép tính số lượng vi khuẩn của mẻ nuôi cấy sau \(t\) ngày kể từ thời điểm ban đầu. Xác định các tham số \({P_0}\) và \(a\left( {a > 0} \right)\). Làm tròn \(a\) đến hàng phần trăm.
b) Sau 5 ngày thì số lượng vi khuẩn bằng bao nhiêu? Làm tròn kết quả đến hàng trăm.
c) Sau bao nhiêu ngày thì số lượng vi khuẩn vượt gấp đôi số lượng ban đầu? Làm tròn kết quả đến hàng phần mười.
Thảo luận (1)Hướng dẫn giảia, Ban đầu có 1000 vi khuẩn nên \(P_0=1000\)
Sau 2 ngày, số lượng vi khuẩn là:
\(P=125\%P_0=125\%\cdot1000=1250\)
Ta có:
\(P\left(2\right)=P_0\cdot a^2\\ \Leftrightarrow1250=1000\cdot a^2\\ \Leftrightarrow a^2=1,25\\ \Leftrightarrow a\approx1,12\)
b, Số lượng vi khuẩn sau 5 ngày là:
\(P\left(5\right)=P_0\cdot a^5=1000\cdot1,12^2\approx1800\) (vi khuẩn)
c, Với \(P\left(t\right)=P_0\cdot a^t\), ta có:
\(P\left(t\right)=P_0\cdot a^t\\ \Leftrightarrow2P_0=P_0\cdot1,12^t\\ \Leftrightarrow1,12^t=2\\ \Leftrightarrow t=log_{1,12}2\approx6,1\)
Vậy sau 6,1 ngày thì số lượng vi khuẩn vượt gấp đôi số lượng ban đầu.
(Trả lời bởi Hà Quang Minh)
Nhắc lại rằng, độ pH của một dung dịch được tính theo công thức \(pH = - \log \left[ {{H^ + }} \right]\), trong đó [H+] là nồng độ H+ của dung dịch đó tính bằng mol/L. Nồng độ H+ trong dung dịch cho biết độ acid của dung dịch đó.
a) Dung dịch acid A có độ pH bằng 1,9; dung dịch acid B có độ pH bằng 25. Dung dịch nào có độ acid cao hơn và cao hơn bao nhiêu lần?
b) Nước cất có nồng độ H+ là 10 mol/L. Nước chảy ra từ một vòi nước có độ pH từ 6,5 đến 6,7 thì có độ acid cao hay thập hơn nước cất?
Thảo luận (2)Hướng dẫn giải\(a,pH_A=1,9\Leftrightarrow-log\left[H^+\right]=1,9\Leftrightarrow H^+=10^{-1,9}\)
Vậy độ acid của dung dịch A là \(10^{-1,9}mol/L\)
\(pH_B=2,5\Leftrightarrow-log\left[H^+\right]=2,5\Leftrightarrow H^+=10^{-2,5}\)
Vậy độ acid của dung dịch B là \(10^{-2,5}mol/L\)
Ta có: \(\dfrac{H^+_A}{H_B^+}=\dfrac{10^{-1,9}}{10^{-2,5}}\approx398\)
Vậy độ acid của dung dịch A cao hơn độ acid của dung dịch B 3,98 lần.
(Trả lời bởi Hà Quang Minh)