a) Hãy vẽ một tứ giác có độ dài hai đường chéo là : 3,6cm, 6cm và hai đường chéo đó vuông góc với nhau. Có thể vẽ được bao nhiêu tứ giác như vậy ? Hãy tính diện tích mỗi tứ giác vừa vẽ
b) Hãy tính diện tích hình vuông có độ dài đường chéo là d
a) Hãy vẽ một tứ giác có độ dài hai đường chéo là : 3,6cm, 6cm và hai đường chéo đó vuông góc với nhau. Có thể vẽ được bao nhiêu tứ giác như vậy ? Hãy tính diện tích mỗi tứ giác vừa vẽ
b) Hãy tính diện tích hình vuông có độ dài đường chéo là d
Vẽ hình chữ nhật có một cạnh bằng đường chéo của một hình thoi cho trước và có diện tích bằng diện tích của hình thoi đó. Từ đó suy ra cách tính diện tích hình thoi.
Thảo luận (2)Hướng dẫn giải
Cho một hình chữ nhật. Vẽ tứ giác có các đỉnh là trung điểm các cạnh của hình chữ nhật. Vì sao tứ giác này là một hình thoi ? So sánh diện tích hình thoi và diện tích hình chữ nhật, từ đó suy ra cách tính diện tích hình thoi.
Thảo luận (2)Hướng dẫn giải
Cho hình chữ nhật ABCD; M,N,P,Q lần lượt là trung điểm của AB,BC, CD, DA.
* Chứng minh MNPQ là hình thoiTa có MN = PQ = 1/2BD
NP = MQ = 1/2 AC
Mà AC = BD
⇒ MN = NP = PQ = QM nên tứ giác MNPQ là hình thoi (Có 4 cạnh bằng nhau)
* Theo bài 33 (các em tham khảo ở trên), ta có SMNPQ = SABNQ và SMNPQ = SNQDC
Vì vậy SABCD = SABNQ + SNQDC = 2SMNPQ
* Ta có SABCD =2SMNPQ ⇒ SMNPQ = 1/2SABCD = 1/2AB.BC = 1/2NQ.MP
(Trả lời bởi Nhật Linh)
Tính diện tích hình thoi có cạnh dài 6cm và một trong các góc của nó có số đo là \(60^0\) ?
Thảo luận (2)Hướng dẫn giảiCho hình thoi ABCD có cạnh AB = 6cm, ∠A = 600
+ ABCD là hình thoi ⇒ ΔBAD cân tại A. Mà ∠A = 600 nên ΔABD là tam giác đều ⇒ BD = AB = 6cm
+ AC ⊥ BD và BI = ID = 3cm
Trong tam giác vuông AIB áp dụng định lý pitago
AI2 = AB2 – IB2 = 36 – 9 = 27 ⇒ AI = √27 (cm)
Suy ra: AC = 2AI = 2√27 (cm)
Vậy SABCD = 1/2AC.BD = 1/2.2√27 .6 = 12√27 (cm2)
(Trả lời bởi Nhật Linh)
Cho một hình thoi và một hình vuông có cùng chu vi. Hỏi hình nào có diện tích lớn hơn ? Vì sao ?
Thảo luận (3)Hướng dẫn giảiGiả sử hình thoi ABCD và hình vuông MNPQ có cùng chu vi là 4a.
Suy ra cạnh hình thoi và cạnh hình vuông đều có độ dài là a
Ta có: SMNPQ = a2
Từ đỉnh góc tù A của hình thoi ABCD vẽ đường cao AH có độ dài h.
Khi đó SABCD = ah
Nhưng h ≤ a (đường vuông góc nhỏ hơn đường xiên) nên ah ≤ a2
Vậy SABCD ≤ SMNPQ
Dấu "=" xảy ra khi h = a hay H trùng với D, nghĩa là hình thoi ABCD trở thành hình vuông.
(Trả lời bởi Phạm Tú Uyên)
Trong những hình thoi có chu vi bằng nhau, hãy tìm hình thoi có diện tích lớn nhất ?
Thảo luận (1)Hướng dẫn giải
Tính diện tích hình thoi, biết cạnh của nó dài 6,2 cm và một trong các góc của nó có số đo là \(30^0\) ?
Thảo luận (1)Hướng dẫn giải
Cho hình thoi ABCD, biết AB = 5cm, AI = 3cm (I là giao điểm của hai đường chéo). Hãy tính diện tích hình thoi đó ?
Thảo luận (1)Hướng dẫn giải
a) Hãy vẽ một tứ giác có hai đường chéo vuông góc với nhau, biết độ dài hai đường chéo đó là \(a\) và \(\dfrac{1}{2}a\). Hỏi có thể vẽ được bao nhiêu hình như vậy ?
b) Có thể vẽ được mấy hình thoi, biết độ dài hai đường chéo là \(a\) và \(\dfrac{1}{2}a\)?
c) Hãy tính diện tích các hình vừa vẽ ?
Thảo luận (1)Hướng dẫn giải
Hai đường chéo của một hình thoi có độ dài là 16 cm và 12 cm
Tính :
a) Diện tích hình thoi
b) Độ dài cạnh hình thoi
c) Độ dàu đường cao hình thoi
Thảo luận (2)Hướng dẫn giải
Gọi hình thoi đó là ABCD
Hai đường chéo BD và AC cắt nhau và vuông góc tại O
Kẻ đường cao AH (H\(\in DC\))
a. SABCD=\(\dfrac{1}{2}.AC.BD=\dfrac{1}{2}.12.16=96\left(cm^2\right)\)
Vậy diện tích hình thoi đó là 96 cm2
b. Ta có: AO=OC=\(\dfrac{AC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
OD=OB=\(\dfrac{BD}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Xét \(\Delta DAO\) có \(\widehat{DOA}=90^o\)
=> OD2+AO2=AD2 (định lý Py-ta-go)
hay: 82+62=AD2
=> AD2=100
=> AD=10 (cm)
Vậy độ dài một cạnh của hình thoi đó là 10 cm
c. Ta có: SABCD=AH.DC
=> AH=\(\dfrac{S_{ABCD}}{DC}=\dfrac{96}{10}=9,6\left(cm\right)\)
Vậy độ dài đường cao của hình thoi đó là 9,6 cm
(Trả lời bởi Ha Hoang Vu Nhat)