Bài 4. Phương trình quy về phương trình bậc nhất một ẩn

Bài 2.2 (SGK Kết nối tri thức với cuộc sống trang 30)

Hướng dẫn giải

a) \(\left( {{x^2} - 4} \right) + x\left( {x - 2} \right) = 0;\)

\(\begin{array}{l}\left( {{x^2} - 4} \right) + x\left( {x - 2} \right) = 0\\\left( {x - 2} \right)\left( {x + 2} \right) + x\left( {x - 2} \right) = 0\\\left( {x - 2} \right)\left( {x + 2 + x} \right) = 0\end{array}\)

\(\begin{array}{l}\left( {x - 2} \right)\left( {2x + 2} \right) = 0\\TH1:x - 2 = 0\\x = 2\\TH2:2x + 2 = 0\\2x =  - 2\\x =  - 1\end{array}\)

Vậy \(x \in \left\{ { - 1;2} \right\}.\)

b) \({\left( {2x + 1} \right)^2} - 9{x^2} = 0.\)

\(\begin{array}{l}{\left( {2x + 1} \right)^2} - {\left( {3x} \right)^2} = 0\\\left( {2x + 1 - 2x} \right)\left( {2x + 1 + 3x} \right) = 0\\1.\left( {5x + 1} \right) = 0\\5x =  - 1\\x = \frac{{ - 1}}{5}\end{array}\)

Vậy \(x = \frac{{ - 1}}{5}.\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2.3 (SGK Kết nối tri thức với cuộc sống trang 30)

Hướng dẫn giải

a) \(\frac{2}{{2x + 1}} + \frac{1}{{x + 1}} = \frac{3}{{\left( {2x + 1} \right)\left( {x + 1} \right)}};\)

ĐKXĐ: \(x \ne  - 1;x \ne \frac{{ - 1}}{2}.\)

Quy đồng mẫu thức ta được:

\(\frac{{2\left( {x + 1} \right)}}{{\left( {2x + 1} \right)\left( {x + 1} \right)}} + \frac{{1.\left( {2x + 1} \right)}}{{\left( {x + 1} \right)\left( {2x + 1} \right)}} = \frac{3}{{\left( {2x + 1} \right)\left( {x + 1} \right)}};\)

Khử mẫu ta được:

\(\begin{array}{l}2\left( {x + 1} \right) + 1.\left( {2x + 1} \right) = 3\\4x + 3 = 3\\x = 0\left( {t/m} \right).\end{array}\)

Vậy nghiệm của phương trình đã cho là \(x = 0.\)

b) \(\frac{1}{{x + 1}} - \frac{x}{{{x^2} - x + 1}} = \frac{{3x}}{{{x^3} + 1}}.\)

ĐKXĐ: \(x \ne  - 1;x \ne \frac{{ - 1}}{2}.\)

Quy đồng mẫu thức ta được: \(\frac{{1.\left( {{x^2} - x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} - \frac{{x\left( {x + 1} \right)}}{{\left( {{x^2} - x + 1} \right)\left( {x + 1} \right)}} = \frac{{3x}}{{\left( {{x^2} - x + 1} \right)\left( {x + 1} \right)}}.\)

Khử mẫu ta được:

\(\begin{array}{l}1.\left( {{x^2} - x + 1} \right) - x\left( {x + 1} \right) = 3x\\ - 2x + 1 = 3x\\5x = 1\\x = \frac{1}{5}\left( {t/m} \right).\end{array}\)

Vậy nghiệm của phương trình đã cho là \(x = \frac{1}{5}.\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2.4 (SGK Kết nối tri thức với cuộc sống trang 30)

Hướng dẫn giải

a) \(x\left( {x - 2} \right) = 0;\)

\(\begin{array}{l}TH1:x = 0\\TH2:x - 2 = 0\\x = 2\end{array}\)

Vậy \(x \in \left\{ {0;2} \right\}.\)

b) \(\left( {2x + 1} \right)\left( {3x - 2} \right) = 0.\)

\(\begin{array}{l}TH1:2x + 1 = 0\\x = \frac{{ - 1}}{2}\\TH2:3x - 2 = 0\\x = \frac{2}{3}\end{array}\)

Vậy \(x \in \left\{ {\frac{{ - 1}}{2};\frac{2}{3}} \right\}.\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2.5 (SGK Kết nối tri thức với cuộc sống trang 30)

Hướng dẫn giải

a)

- Một giờ người thứ nhất làm được số công việc là \(\frac{1}{x}\) (công việc)

- Hai người làm công việc 8 giờ thì xong nên một giờ hai người làm được số công việc là \(\frac{1}{8}\) (công việc)

Nên một giờ người thứ hai làm được \(\frac{1}{8} - \frac{1}{x}\) (công việc)

b) Hai người cùng làm trong 4 giờ thì làm được \(4.\frac{1}{8} = \frac{1}{2}\) (công việc)

Người thứ hai làm tiếp tục một mình trong 12h làm được \(12.\left( {\frac{1}{8} - \frac{1}{x}} \right) = \frac{3}{2} - \frac{{12}}{x}\) (công việc) thì xong công việc nên ta có phương trình:

\(\frac{1}{2} + \left( {\frac{3}{2} - \frac{{12}}{x}} \right) = 1\) hay \(\frac{3}{2} - \frac{{12}}{x} = \frac{1}{2}\) suy ra \(\frac{{12}}{x} = 1\) nên \(x = 12\left( {t/m} \right)\)

Với \(x = 12\) thì một giờ người thứ hai làm được \(\frac{1}{8} - \frac{1}{{12}} = \frac{1}{{24}}\) (công việc)

Do đó thời gian hoàn thành công việc của người thứ hai nếu làm một mình là \(1:\frac{1}{{24}} = 24\) (giờ)

Vậy nếu làm riêng người thứ nhất hoàn thành công việc trong 12 h.

Người thứ hai hoàn thành công việc trong 24h.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)