Bài 3. Đa giác đều và phép quay

Khám phá 1 (SGK Chân trời sáng tạo - Tập 2 - Trang 75)

Hướng dẫn giải

- Độ dài các cạnh của mỗi đa giác là bằng nhau.

- Số đo góc của mỗi đa giác là bằng nhau.

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 1 (SGK Chân trời sáng tạo - Tập 2 - Trang 77)

Hướng dẫn giải

Các cung \(\overset\frown{MN}, \overset\frown{NP}, \overset\frown{PQ}, \overset\frown{QR}, \overset\frown{RM}\) chia đường tròn (O; R) thành 6 cung có số đo bằng nhau, suy ra số đo mỗi cung là 360o : 5 = 72o.

Ta có \(\widehat {MON}\) là góc nội tiếp chắn cung MN suy ra \(\widehat {MON}\) = 72o .

Xét \(\Delta \)MON, có: OM = ON = R suy ra \(\Delta \) MON cân tại O.

Suy ra \(\widehat {OMN} = \widehat {ONM}\) (tính chất tam giác cân)

Suy ra \(\widehat {OMN} = \widehat {ONM} = \frac{{{{180}^o} - \widehat {MON}}}{2} = {54^o}\).

Tương tự, ta có \(\widehat {OPN} = \widehat {ONP} = {54^o}\).

Suy ra \(\widehat {MPN} = \widehat {ONM} + \widehat {ONP} = {54^o} + {54^o} = {108^o}\).

Xét \(\Delta \) OMN và \(\Delta \) ONP có:

 \(\widehat {MON} = \widehat {NOP}\);

 OM = OP;

 ON chung.

Suy ra  \(\Delta \) OMN = \(\Delta \) ONP (c – g – c).

Do đó, MN = NP (hai cạnh tương ứng).

Chứng minh tương tự ta thu được ngũ giác MNPQR có các cạnh bằng nhau và các góc đều bằng nhau ( = 108o).

Vậy MNPQR là một đa giác đều.

(Trả lời bởi datcoder)
Thảo luận (1)

Vận dụng 1 (SGK Chân trời sáng tạo - Tập 2 - Trang 77)

Hướng dẫn giải

Do ABCDEF là lục giác đều nên:

\(\widehat A = \widehat B = \widehat C = \widehat D = \widehat E = \widehat F = {120^o}\).

- AB = BC = CD = DE = EF = FA.

Vì M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, DE, EF, FA.

Suy ra AM = MB = BN = NC = CP = PD = DQ = QE = ER = RF = FS = SA.

Xét \(\Delta \) SAM và \(\Delta \) MBN có:

\(\widehat A = \widehat B\) (chứng minh trên);

 AM = BN (chứng minh trên);

 SA = MB (chứng minh trên).

Suy ra \(\Delta \) SAM = \(\Delta \) MBN  (c – g – c).

Do đó, SM = MN (hai cạnh tương ứng).

Chứng minh tương tự ta được: MN = NP, NP = PQ, QR = RS, RS = SM (1).

Vì AS = AM (chứng minh trên) suy ra \(\Delta \) ASM cân tại A.

suy ra \(\widehat {ASM} = \widehat {AMS}\) (tính chất tam giác cân)

Nên \(\widehat {ASM} = \widehat {AMS} = \frac{{{{180}^o} - \widehat A}}{2} = {30^o}\) (tổng 3 góc trong của tam giác).

Tương tự ta thu được:

\(\widehat {BMN} = \widehat {BNM} = \frac{{{{180}^o} - \widehat B}}{2} = 30\);

\(\widehat {CNP} = \widehat {CPN} = \frac{{{{180}^o} - \widehat C}}{2} = {30^o}\);

\(\widehat {DPQ} = \widehat {DQP} = \frac{{{{180}^o} - \widehat D}}{2} = {30^o}\);

\(\widehat {EQR} = \widehat {ERQ} = \frac{{{{180}^o} - \widehat E}}{2} = {30^o}\);.

\(\widehat {FRS} = \widehat {FSR} = \frac{{{{180}^o} - \widehat F}}{2} = {30^o}\)

Ta có: 

\(\widehat {RSM} = {180^o} - \widehat {FRS} - \widehat {ASM} = {180^o} - {30^o} - {30^o} = {120^o}\)

Tương tự, ta được: 

\(\widehat {AMN} = \widehat {MNP} = \widehat {NQP} = \widehat {PQR} = \widehat {QRS} = {120^o}\).   (2)

Từ (1) và (2), suy ra MNPQRS là đa giác đều.

(Trả lời bởi datcoder)
Thảo luận (1)

Khám phá 2 (SGK Chân trời sáng tạo - Tập 2 - Trang 77)

Hướng dẫn giải

a) Khi điểm M trùng với B thì M vạch lên một cung tròn có số đo bằng 270o.

b) Trong quá trình trên, hình vuông H trùng khít với hình vuông ABCD 4 lần (không tính vị trí ban đầu trước khi quay).

- Lần 1, điểm M vạch lên cung số đo 90o.

- Lần 2, điểm M vạch lên cung số đo 180o.

- Lần 3, điểm M vạch lên cung số đo 270o.

- Lần 4, điểm M vạch lên cung số đo 360o.

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 2 (SGK Chân trời sáng tạo - Tập 2 - Trang 78)

Hướng dẫn giải

I đỉnh của ngũ giác đều chia đường tròn (I) thành 5 cung bằng nhau, mỗi cung đo có số đo 72o. Từ đó, các phép quay biến ngũ giác đều thành chính nó là các phép quay 72o, 144o, 216o, 288o hoặc 360o tâm I cùng chiều kim đồng hồ hay ngược chiều kim đồng hồ.

(Trả lời bởi datcoder)
Thảo luận (1)

Vận dụng 2 (SGK Chân trời sáng tạo - Tập 2 - Trang 78)

Hướng dẫn giải

10 đỉnh của đa giác đều, 10 cạnh chia đường tròn thành 10 cung bằng nhau mỗi cung có số đo 36o. Từ đó, các phép quay biến đa giác đều 10 cạnh thành chính nó là các phép quay 36o, 72o, 108o, 144o, 180o, 216o, 252o, 288o, 324o, 360o; tâm đường tròn cùng chiều kim đồng hồ hoặc ngược chiều kim đồng hồ.

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 3 (SGK Chân trời sáng tạo - Tập 2 - Trang 79)

Hướng dẫn giải

Hình phẳng đều trong thực tế: rubik, bàn cờ,...

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 1 (SGK Chân trời sáng tạo - Tập 2 - Trang 79)

Hướng dẫn giải

a) Tam giác đều. Các phép quay biến tam giác đều thành chính nó là các phép quay 120o, 240o hoặc 360o tâm O cùng chiều hay ngược chiều kim đồng hồ.

b) Hình vuông. Các phép quay biến hình vuông thành chính nó là các phép quay 90o, 180o, 270o, 360o tâm I cùng chiều hay ngược chiều kim đồng hồ.

c) Ngũ giác đều. Các phép quay biến ngũ giác đều thành chính nó là các phép quay 72o, 144o, 216o, 288o, 360o tâm A cùng chiều hay ngược chiều kim đồng hồ.

d) Lục giác đều. Các phép quay biến lục giác đều thành chính nó là các phép quay 60o, 120o, 180o, 240o, 300o, 360o tâm B cùng chiều hay ngược chiều kim đồng hồ.

e) Bát giác đều. Các phép quay biến bát giác đều thành chính nó là các phép quay 45o, 90o, 135o, 180o, 225o, 270o, 315o, 360o tâm C cùng chiều hay ngược chiều kim đồng hồ.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 2 (SGK Chân trời sáng tạo - Tập 2 - Trang 79)

Hướng dẫn giải

a) 9 đỉnh của đa giác chia đường tròn thành 9 phần bằng nhau, số đo mỗi cung là: 360o : 9 = 40o.

Vì \(\widehat {AOB}\) là góc nội tiếp chắn cung AB nhỏ

Suy ra \(\widehat {AOB} = {40^o}\).

Do OA = OB = R nên tam giác AOB cân tại O

Suy ra \(\widehat {OAB} = \widehat {OBA} = \frac{{{{180}^o} - \widehat {AOB}}}{2} = {70^o}\).

Tương tự, ta có \(\widehat {COB} = {40^o}\).

Suy ra \(\widehat {OBC} = \widehat {OCB} = \frac{{{{180}^o} - \widehat {BOC}}}{2} = {70^o}\)

Ta có \(\widehat {ABC} = \widehat {OBA} + \widehat {OBC} = {70^o} + {70^o} = {140^o}\).

b) Các phép quay biến đa giác thành chính nó là các phép quay 40o, 80o, 120o, 160o, 200o, 240o, 280o, 320o hoặc 360o tâm O cùng chiều hay ngược chiều kim đồng hồ.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 3 (SGK Chân trời sáng tạo - Tập 2 - Trang 80)

Hướng dẫn giải

Đường viền ngoài của chiếc đồng hồ trong Hình 13 được làm theo hình bát giác đều.

8 đỉnh của đa giác được chia thành 8 phần bằng nhau, mỗi cung có số đo 45o. Do đó, các phép quay biến bát giác đều thành chính nó là 45o, 90o, 135o, 180o, 225o, 270o, 315o, 360o theo chiều hoặc ngược chiều kim đồng hồ.

(Trả lời bởi datcoder)
Thảo luận (1)