Tìm giá trị x trong Hình 12.
Tìm giá trị x trong Hình 12.
Bánh đà của một động cơ được thiết kế có dạng một đường tròn tâm O, bán kính 15 cm được kéo bởi một dây curoa. Trục của mô tơ truyền lực được biểu diễn bởi điểm M (Hình 13). Cho biết khoảng cách OM là 35 cm.
a) Tính độ dài của hai đoạn dây curoa MA và MB (kết quả làm tròn đến hàng phần mười).
b) Tính số đo \(\widehat {AMB}\) tạo bởi hai tiếp tuyến AM, BM và số đo \(\widehat {AOB}\) (kết quả làm tròn đến phút).
Thảo luận (1)Hướng dẫn giảia) Áp dụng định lý Pythagore vào tam giác AOM vuông tại A, ta có:
MA = \(\sqrt {O{M^2} - O{A^2}} = \sqrt {{{35}^2} - {{15}^2}} = 31,6cm\)
MA và MB là hai tiếp tuyến của (O; 15cm) cắt nhau tại M nên MA = MB = 31,6 cm.
b) Ta có \(\widehat {AMB}\) tạo bởi hai tiếp tuyến AM, BM có MO là phân giác nên \(\widehat {AMB}\) = 2\(\widehat {AMO}\).
Xét tam giác AOM vuông tại A, ta có:
sin \(\widehat {AMO}\) = \(\frac{{AO}}{{MO}} = \frac{{15}}{{35}} = \frac{3}{7}\)
suy ra \(\widehat {AMO} \approx {25^o}23'\) nên \(\widehat {AMB}\)= 2\(\widehat {AMO} \approx {50^o}46'\)
\(\begin{array}{l}\widehat {AOB} = {360^o} - (2\widehat {AOM} + \widehat {AMB})\\ = {360^o} - ({2.90^o} + {50^o}46')\\ = {129^o}54'\end{array}\)
(Trả lời bởi datcoder)
Cho tam giác ABC có đường cao AH (Hình 8). Tìm tiếp tuyến của đường tròn (A; AH) tại H.
Thảo luận (1)Hướng dẫn giảiTa có BC là tiếp tuyến của đường tròn (A; AH) vì BC đi qua điểm H thuộc đường tròn (A; AH) và BC vuông góc với AH.
(Trả lời bởi datcoder)
Cho điểm M nằm ngoài đường tròn (I; 6 cm) và ME, MF là hai tiếp tuyến của đường tròn này tại E và F. Cho biết \(\widehat {EMF} = {60^o}\).
a) Tính số đo \(\widehat {EMI}\) và \(\widehat {EIF}\) .
b) Tính độ dài MI.
Thảo luận (1)Hướng dẫn giảia) Ta có hai tiếp tuyến ME và MF cắt nhau tại M nên MI là tia phân giác \(\widehat {EMF}\).
Suy ra \(\widehat {EMI} = \frac{{\widehat {EMF}}}{2} = \frac{{{{60}^o}}}{2} = {30^o}\).
Xét tứ giác MEFI ta có
\(\begin{array}{l}\widehat {EIF} = {360^o} - (\widehat {EMF} + \widehat {MFI} + \widehat {MEI})\\ = {360^o} - (\widehat {EMF} + 2\widehat {MFI})\\ = {360^o} - ({60^o} + {2.90^o})\\ = {120^o}\end{array}\)
b) Xét tam giác MEI vuông tại E, MI = 6 cm; \(\widehat {EMI} = {30^o}\) ta có
sin \(\widehat {EMI}\) = \(\frac{{EI}}{{MI}}\) suy ra MI = \(\frac{{EI}}{{\sin \widehat {EMI}}} = \frac{6}{{\sin {{30}^o}}} = 12\)cm.
(Trả lời bởi datcoder)
Một diễn viên xiếc đi xe đạp trên một sợi dây cáp căng (Hình 9). Ta coi sợi dây là tiếp tuyến của mỗi bánh xe, xác định các tiếp điểm.
Thảo luận (1)Hướng dẫn giảiTiếp điểm là giao điểm tiếp xúc của nan hoa với dây cáp.
(Trả lời bởi datcoder)
Cho điểm A nằm trên đường tròn (O; R), đường thẳng d đi qua A và vuông góc với OA. Gọi M là một điểm trên d (M khác A).
a) Giải thích tại sao ta có OA = R và OM > R.
b) Giải thích tại sao d và (O) không thể có điểm chung nào khác ngoài A.
Thảo luận (1)Hướng dẫn giảia) Ta có OA = R vì điểm O nằm trên đường tròn (O; R).
Xét tam giác AOM vuông tại A ta có AM và OA là cạnh góc vuông, OM là cạnh huyền nên OM > OA mà R = OA suy ra OM > R.
b) d và (O) không thể có điểm chung nào khác ngoài A vì d tiếp xúc với (O) và d là tiếp tuyến của (O).
(Trả lời bởi datcoder)
Cho đường tròn (J; 5 cm) và đường thẳng c. Gọi K là chân đường vuông góc vẽ từ J xuống c, d là độ dài của đoạn thẳng JK. Xác định vị trí tương đối của đường thẳng c và đường tròn (J; 5 cm) trong mỗi trường hợp sau:
a) d = 4 cm
b) d = 5 cm
c) d = 6 cm
Thảo luận (1)Hướng dẫn giảia) Ta có JK = 4 cm, R = 5 cm. Vì JK < R nên c cắt đường tròn (J; 5 cm) tại hai điểm.
b) Ta có JK = 5 cm, R = 5 cm. Vì JK = R nên c tiếp xúc đường tròn (J; 5 cm).
c) Ta có JK = 6 cm, R = 5 cm. Vì JK > R nên c và đường tròn (J; 5 cm) không giao nhau.
(Trả lời bởi datcoder)
Nêu nhận xét về số điểm chung của đường thẳng a và đường tròn (O) trong mỗi hình sau:
Thảo luận (1)Hướng dẫn giải
Một diễn viên xiếc đi xe đạp một bánh trên sợi dây cáp căng được cố định ở hai đầu dây. Biết đường kính bánh xe là 72 cm, tính khoảng cách từ trục bánh xe đến dây cáp.
Thảo luận (1)Hướng dẫn giảiTa có sợi dây cáp tiếp xúc với bánh xe nên khoảng cách từ trục bánh xe tới dây cáp bằng bán kính bánh xe.
Suy ra khoảng cách từ trục bánh xe đến dây cáp = \(\frac{{72}}{2} = 36cm\).
(Trả lời bởi datcoder)
Cho đường tròn O và hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại điểm A (Hình 10).
a) Chứng minh hai tam giác ABO và ACO bằng nhau.
b) Tìm các đoạn thẳng bằng nhau và các góc bằng nhau trong Hình 10.
Thảo luận (1)Hướng dẫn giảia) Xét tam giác ABO và ACO có:
\(\widehat {ABO} = \widehat {ACO} = {90^o}\)
AO chung
OB = OC = R
Suy ra \(\Delta \)ABO = \(\Delta \)ACO (cạnh huyền - cạnh góc vuông)
b) Theo Hình 10, ta có: \(\Delta \)ABO = \(\Delta \)ACO
suy ra AB = AC; BO = CO
\(\begin{array}{l}\widehat {ABO} = \widehat {ACO} = {90^o}\\\widehat {BAO} = \widehat {CAO}\\\widehat {AOB} = \widehat {AOC}\end{array}\)
(Trả lời bởi datcoder)