Bài 2. Giới hạn của hàm số

Hoạt động 1 (SGK Cánh Diều trang 66-69)

Hướng dẫn giải

Tham khảo:

a,

\(\lim f\left( {{x_n}} \right) = \lim \left( {2.\frac{{n + 1}}{n}} \right) = \lim 2.\lim \left( {1 + \frac{1}{n}} \right) = 2.\left( {1 + 0} \right) = 2\)

b) Lấy dãy số bất kì \(\left( {{x_n}} \right),{x_n} \to 1\) ta có \(f\left( {{x_n}} \right) = 2{x_n}.\)

 \(\lim f\left( {{x_n}} \right) = \lim \left( {2{x_n}} \right) = \lim 2.\lim {x_n} = 2.1 = 2\)

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Luyện tập - Vận dụng 1 (SGK Cánh Diều trang 66,67)

Hướng dẫn giải

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \(\lim {x_n} = 2.\)

Ta có \(\lim x_n^2 = {2^2} = 4\)

Vậy \(\mathop {\lim }\limits_{x \to 2} {x^2} = 4.\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 2 (SGK Cánh Diều trang 66-69)

Hướng dẫn giải

a) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} - 1} \right) = \mathop {\lim }\limits_{x \to 1} {x^2} - \mathop {\lim }\limits_{x \to 1} 1 = {1^2} - 1 = 0\)

\(\mathop {\lim }\limits_{x \to 1} g\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to 1} x + \mathop {\lim }\limits_{x \to 1} 1 = 1 + 1 = 2\)

b) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x} \right) = {1^2} + 1 = 2\\\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 + 2 = 2\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)

c) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} - x - 2} \right) = {1^2} - 1 - 2 =  - 2\\\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 - 2 =  - 2\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (2)

Luyện tập - Vận dụng 2 (SGK Cánh Diều trang 66-69)

Hướng dẫn giải

a) \(\mathop {\lim }\limits_{x \to 2} \left[ {\left( {x + 1} \right)\left( {{x^2} + 2x} \right)} \right] = \mathop {\lim }\limits_{x \to 2} \left( {x + 1} \right).\mathop {\lim }\limits_{x \to 2} \left( {{x^2} + 2x} \right) = \left( {2 + 1} \right).\left( {{2^2} + 2.2} \right) = 24\)                

b) \(\mathop {\lim }\limits_{x \to 2} \sqrt {{x^2} + x + 3}  = \sqrt {\mathop {\lim }\limits_{x \to 2} \left( {{x^2} + x + 3} \right)}  = \sqrt {\mathop {\lim }\limits_{x \to 2} {x^2} + \mathop {\lim }\limits_{x \to 2} x + \mathop {\lim }\limits_{x \to 2} 3}  = \sqrt {{2^2} + 2 + 3}  = 3\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 3 (SGK Cánh Diều trang 66-69)

Hướng dẫn giải

a) Xét dãy số \(\left( {{u_n}} \right)\) sao cho \({u_n} < 0\) và \(\lim {u_n} = 0.\) Khi đó \(f\left( {{u_n}} \right) =  - 1\) và \(\lim f\left( {{u_n}} \right) =  - 1.\)

b) Xét dãy số \(\left( {{v_n}} \right)\) sao cho \({v_n} > 0\) và \(\lim {v_n} = 0.\) Khi đó \(f\left( {{v_n}} \right) = 1\) và \(\lim f\left( {{v_n}} \right) = 1.\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 3 (SGK Cánh Diều trang 66-69)

Hướng dẫn giải

Với dãy số \(\left( {{x_n}} \right)\) bất kì \({x_n} >  - 4\) và \({x_n} \to  - 4,\) ta có:

\(\begin{array}{c}\mathop {\lim }\limits_{{x_n} \to  - {4^ + }} \left( {\sqrt {{x_n} + 4}  + {x_n}} \right) = \mathop {\lim }\limits_{{x_n} \to  - {4^ + }} \sqrt {{x_n} + 4}  + \mathop {\lim }\limits_{{x_n} \to  - {4^ + }} {x_n} = \sqrt {\mathop {\lim }\limits_{{x_n} \to  - {4^ + }} \left( {{x_n} + 4} \right)}  + \left( { - 4} \right)\\ = \sqrt {\mathop {\lim }\limits_{{x_n} \to  - {4^ + }} {x_n} + 4}  - 4 = \sqrt { - 4 + 4}  - 4 =  - 4\end{array}\)

Vậy \(\mathop {\lim }\limits_{x \to  - {4^ + }} \left( {\sqrt {x + 4}  + x} \right) =  - 4\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 4 (SGK Cánh Diều trang 69,70)

Hướng dẫn giải

a) Khi biến dần tới dương vô cực thì \(f\left( x \right)\) dần tới 0.

b) Khi biến x dần tới âm vô cực thì \(f\left( x \right)\) dần tới 0.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 4 (SGK Cánh Diều trang 69,70)

Hướng dẫn giải

\(\mathop {\lim }\limits_{x \to  - \infty } \frac{{3x + 2}}{{4x - 5}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x\left( {3 + \frac{2}{x}} \right)}}{{x\left( {4 - \frac{5}{x}} \right)}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{3 + \frac{2}{x}}}{{4 - \frac{5}{x}}} = \frac{{3 + 0}}{{4 - 0}} = \frac{3}{4}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 5 (SGK Cánh Diều trang 70,71)

Hướng dẫn giải

a) Khi biến x dần tới 1 về bên phải thì \(f\left( x \right)\) dần dương vô cực.

b) Khi biến x dần tới 1 về bên trái thì \(f\left( x \right)\) dần âm vô cực.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 5 (SGK Cánh Diều trang 70,71)

Hướng dẫn giải

\(\mathop {\lim }\limits_{x \to  - {2^ - }} \frac{1}{{x + 2}} =  - \infty \)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)