Bài 1: Tính đơn diệu và cực trị của hàm số

Khám phá 3 (SGK Chân trời sáng tạo - Tập 1 - Trang 11)

Hướng dẫn giải

a) Hàm số y = f (x) có:

x = 1 là điểm cực đại vì f (x) < f(1) với mọi \(x \in \left( {0;{\rm{  + }}\infty } \right)\backslash \left\{ 0 \right\}\)

x = 0 là điểm cực tiểu vì f(x) > f(0) với mọi \(x \in \left( { + \infty ;{\rm{ 1}}} \right)\backslash \left\{ 0 \right\}\)

b) Tại x = 1, hàm số không có đạo hàm vì đồ thị bị gấp khúc

c)

Nhận xét: Khi đi qua các điểm cực đại và cực tiểu thì y’ đổi dấu

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 5 (SGK Chân trời sáng tạo - Tập 1 - Trang 12)

Hướng dẫn giải

Tập xác định: \(D = \mathbb{R}\backslash \{  - 1\} \)

\(g'(x) = \frac{{{x^2} + 2x - 3}}{{{x^2} + 2x + 1}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 3\end{array} \right.\)

Bảng biến thiên:

Vậy hàm số đạt cực tiểu tại x = -3, \({y_{ct}} = f( - 3) =  - 5\), đạt cực đại tại x = 1, \({y_{cd}} = f(1) = 3\)

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 3 (SGK Chân trời sáng tạo - Tập 1 - Trang 9)

Hướng dẫn giải

Tập xác định: \(D = \mathbb{R}\)

\(f'(x) = 3 - \cos x\)

Ta có: \( - 1 \le \cos x \le 1\) nên \(2 \le 3 - \cos x \le 4\). Vì vậy \(f'(x) > 0\forall x \in \mathbb{R}\)

=> Hàm số \(f\left( x \right){\rm{ }} = {\rm{ }}3x{\rm{ }} - {\rm{ }}sinx\) đồng biến trên \(\mathbb{R}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 4 (SGK Chân trời sáng tạo - Tập 1 - Trang 11)

Hướng dẫn giải

Hàm số y = f (x) có:

x = 5 là điểm cực đại vì f (x) < f(5) với mọi \(x \in \left( {3;{\rm{ 7}}} \right)\backslash \left\{ 5 \right\}\), \({y_{cd}} = f(5) = 5\)

x = 3 là điểm cực tiểu vì f(x) > f(3) với mọi \(x \in \left( {1;{\rm{ 5}}} \right)\backslash \left\{ 3 \right\}\), \({y_{ct}} = f(3) = 2\)

x=7 là điểm cực tiểu vì f(x) > f(7) với mọi \(x \in \left( {5;{\rm{ 9}}} \right)\backslash \left\{ 7 \right\}\), \({y_{ct}} = f(7) = 1\)

(Trả lời bởi datcoder)
Thảo luận (1)

Vận dụng 1 (SGK Chân trời sáng tạo - Tập 1 - Trang 9)

Hướng dẫn giải

\(h\left( t \right) = 6{t^3} - 81{t^2} + 324t\)

Tập xác định: \(D = \mathbb{R}\)

\(h'(t) = 18{t^2} - 162t + 324\)

\(h'(t) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = 6\end{array} \right.\)

Bảng biến thiên:

Trong thời gian từ lúc xuất phát đến thời điểm 3 phút, độ cao của khinh khí cầu tăng dần từ 0m lên 405m

Độ cao của khinh khí cầu tăng dần từ 0m lên 405m trong thời gian từ lúc xuất phát đến thời điểm 3 phút, từ 324m lên 480m trong thời gian từ 6 phút đến 8 phút

Độ cao của khinh khí cầu giảm dần từ 405m xuống 324m trong thời gian từ 3 phút đến 6 phút

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 2 (SGK Chân trời sáng tạo - Tập 1 - Trang 9)

Hướng dẫn giải

a) \(f(x) = {x^3} - 6{x^2} + 9x\)

Tập xác định: \(D = \mathbb{R}\)

\(f'(x) = 3{x^2} - 12x + 9\)

\(f'(x) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\)

Bảng biến thiên:

Vậy hàm số \(f(x) = {x^3} - 6{x^2} + 9x\) đồng biến trên các khoảng (\( - \infty \); 1) và (3; \( + \infty \)), nghịch biến trên khoảng (1; 3)

b) \(g(x) = \frac{1}{x}\)

Tập xác định: \(D = \mathbb{R}\backslash \{ 0\} \)

\(g'(x) =  - \frac{1}{{{x^2}}}\)

Vì \({x^2} > 0\forall x \in \mathbb{R}\backslash \{ 0\} \) nên \(g'(x) < 0\forall x \in \mathbb{R}\backslash \{ 0\} \)

Bảng biến thiên:

Vậy hàm số \(g(x) = \frac{1}{x}\) nghịch biến trên các khoảng (\( - \infty \); 0) và (0; \( + \infty \))

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 1 (SGK Chân trời sáng tạo - Tập 1 - Trang 7)

Hướng dẫn giải

Hàm số đồng biến trên các khoảng (−3; -2) và (-1; 0)

Hàm số nghịch biến trên khoảng (-2; -1) và (0; 1)

(Trả lời bởi datcoder)
Thảo luận (1)

Khởi động (SGK Chân trời sáng tạo - Tập 1 - Trang 6)

Khám phá 1 (SGK Chân trời sáng tạo - Tập 1 - Trang 7)

Hướng dẫn giải

a) Hàm số đồng biến trên khoảng (0; \( + \infty \))

Hàm số nghịch biến trên khoảng (\( - \infty \); 0)

b) f '(x) = (\({x^2}\))' = 2x

Ta có:

f '(x) > 0 \( \Leftrightarrow 2x > 0 \Leftrightarrow x > 0\)

f '(x) < 0 \( \Leftrightarrow 2x < 0 \Leftrightarrow x < 0\)

c) Nhận xét:

f’(x) > 0 trên K thì y = f(x) đồng biến trên K

f’(x) < 0 trên K thì y = f(x) nghịch biến trên K

(Trả lời bởi datcoder)
Thảo luận (1)

Khám phá 2 (SGK Chân trời sáng tạo - Tập 1 - Trang 10)

Hướng dẫn giải

a) Trên khoảng (-1; 2), f(x) < f(0) với mọi \(x \ne 0\)

b) Trên khoảng (0; 3), f(x) > f(2) với mọi \(x \ne 2\)

c) Không tồn tại khoảng (a; b) chứa điểm x = 1 mà trên đó f(x) > f(1) với mọi \(x \ne 1\) hoặc f(x) < f(1) với mọi \(x \ne 1\)

(Trả lời bởi datcoder)
Thảo luận (1)