Bài 1: Phương trình mặt phẳng

Khám phá 5 (SGK Chân trời sáng tạo - Tập 2 - Trang 36)

Hướng dẫn giải

a) Do \(\left( \alpha  \right)\) nhận \(\vec a\) và \(\vec b\) làm một cặp vectơ chỉ phương, nên \(\left( \alpha  \right)\) sẽ nhận vectơ \(\vec n = \left[ {\vec a,\vec b} \right]\) làm một vectơ pháp tuyến.

Tích có hướng của hai vectơ \(\vec a\) và \(\vec b\) là:

\(\left[ {\vec a,\vec b} \right] = \left( {3.1 - 1.0;1.2 - 1.1;1.0 - 3.2} \right) = \left( {3;1; - 6} \right)\).

Vậy \(\left( \alpha  \right)\) nhận \(\vec n = \left( {3;1; - 6} \right)\) làm một vectơ pháp tuyến.

b) Mặt phẳng \(\left( \alpha  \right)\) đi qua \(M\left( {0,2,1} \right)\) và nhận \(\vec n = \left( {3;1; - 6} \right)\) làm một vectơ pháp tuyến, nên phương trình mặt phẳng \(\left( \alpha  \right)\) là:

\(3\left( {x - 0} \right) + 1\left( {y - 2} \right) - 6\left( {z - 1} \right) = 0 \Leftrightarrow 3x + y - 6z + 4 = 0\).

(Trả lời bởi datcoder)
Thảo luận (1)

Khám phá 6 (SGK Chân trời sáng tạo - Tập 2 - Trang 37)

Hướng dẫn giải

a) Mặt phẳng \(\left( \alpha  \right)\) đi qua ba điểm \(A\left( {0;1;1} \right)\), \(B\left( {2;4;3} \right)\), \(C\left( {5;3;1} \right)\) nên có cặp vectơ chỉ phương là \(\overrightarrow {AB}  = \left( {2;3;2} \right)\) và \(\overrightarrow {AC}  = \left( {5;2;0} \right)\).

b) Do \(\left( \alpha  \right)\) có một cặp vectơ chỉ phương là \(\overrightarrow {AB}  = \left( {2;3;2} \right)\) và \(\overrightarrow {AC}  = \left( {5;2;0} \right)\), nên một vectơ pháp tuyến của \(\left( \alpha  \right)\) là:

\(\vec n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {3.0 - 2.2;2.5 - 2.0;2.2 - 3.5} \right) = \left( { - 4;10; - 11} \right)\).

c) Mặt phẳng \(\left( \alpha  \right)\) đi qua \(A\left( {0;1;1} \right)\) và có một vectơ pháp tuyến là \(\vec n = \left( { - 4;10; - 11} \right)\) nên phương trình mặt phẳng \(\left( \alpha  \right)\) là:

\( - 4\left( {x - 0} \right) + 10\left( {y - 1} \right) - 11\left( {z - 1} \right) = 0 \Leftrightarrow  - 4x + 10y - 11z + 1 = 0\).

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 4 (SGK Chân trời sáng tạo - Tập 2 - Trang 38)

Hướng dẫn giải

a) Mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {2;0; - 1} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {5; - 2;7} \right)\) nên có phương trình là \(5\left( {x - 2} \right) - 2\left( {y - 0} \right) + 7\left( {z + 1} \right) = 0 \Leftrightarrow 5x - 2y + 7z - 3 = 0\).

b) Một vectơ pháp tuyến của \(\left( P \right)\) là:

\(\vec n = \left[ {\vec u,\vec v} \right] = \left( {2.0 - \left( { - 1} \right).1; - 1.3 - 2.0;2.1 - 2.3} \right) = \left( {1; - 3; - 4} \right)\).

Mặt phẳng \(\left( P \right)\) đi qua \(B\left( { - 2;3;0} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {1; - 3; - 4} \right)\) nên có phương trình là \(1\left( {x + 2} \right) - 3\left( {y - 3} \right) - 4\left( {z - 0} \right) = 0 \Leftrightarrow x - 3y - 4z + 11 = 0\).

c) Mặt phẳng \(\left( P \right)\) đi qua ba điểm \(A\left( {2;1;5} \right)\), \(B\left( {3;2;7} \right)\), \(C\left( {4;1;6} \right)\) nên có 1 cặp vectơ chỉ phương là \(\overrightarrow {AB}  = \left( {1;1;2} \right)\) và \(\overrightarrow {AC}  = \left( {2;0;1} \right)\). Do đó một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) là \(\vec n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1.1 - 2.0;2.2 - 1.1;1.0 - 1.2} \right) = \left( {1;3; - 2} \right)\).

Mặt phẳng \(\left( P \right)\) đi qua \(A\left( {2;1;5} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {1;3; - 2} \right)\) nên có phương trình là \(1\left( {x - 2} \right) + 3\left( {y - 1} \right) - 2\left( {z - 5} \right) = 0 \Leftrightarrow x + 3y - 2z + 5 = 0\).

d) Mặt phẳng \(\left( P \right)\) đi qua ba điểm \(M\left( {7;0;0} \right)\), \(N\left( {0; - 2;0} \right)\), \(P\left( {0;0;9} \right)\) nên phương trình mặt phẳng \(\left( P \right)\) là \(\frac{x}{7} + \frac{y}{{ - 2}} + \frac{z}{9} = 1\).

(Trả lời bởi datcoder)
Thảo luận (1)

Vận dụng 3 (SGK Chân trời sáng tạo - Tập 2 - Trang 38)

Hướng dẫn giải

Mặt phẳng \(\left( {O'AB} \right)\) đi qua \(A\left( {2;0;0} \right)\), \(B\left( {0;3;0} \right)\), \(O'\left( {0;0;5} \right)\) nên phương trình mặt phẳng \(\left( {O'AB} \right)\) là \(\frac{x}{2} + \frac{y}{3} + \frac{z}{5} = 1\).

Theo hình vẽ, hình lăng trụ \(OAB.O'A'B'\) có các cạnh bên vuông góc với đáy, nên ta có \(OO' \bot \left( {O'A'B'} \right)\). Suy ra \[\overrightarrow {OO'}  = \left( {0;0;5} \right)\] là một vectơ pháp tuyến của mặt phẳng \(\left( {O'A'B'} \right)\).

Hơn nữa, mặt phẳng \(\left( {O'A'B'} \right)\) đi qua \(O'\left( {0;0;5} \right)\) nên phương trình mặt phẳng \(\left( {O'A'B'} \right)\) là \(0\left( {x - 0} \right) + 0\left( {y - 0} \right) + 5\left( {z - 5} \right) = 0 \Leftrightarrow z - 5 = 0\).

(Trả lời bởi datcoder)
Thảo luận (1)

Khám phá 7 (SGK Chân trời sáng tạo - Tập 2 - Trang 38)

Hướng dẫn giải

a) Một vectơ pháp tuyến của mặt phẳng \(\left( \alpha  \right)\) là \(\overrightarrow {{n_{\left( \alpha  \right)}}}  = \left( {1; - 2;3} \right)\).

Một vectơ pháp tuyến của mặt phẳng \(\left( \beta  \right)\) là \(\overrightarrow {{n_{\left( \beta  \right)}}}  = \left( {2; - 4;6} \right)\).

Do \(\frac{1}{2} = \frac{{ - 2}}{{ - 4}} = \frac{3}{6}\), nên \(\overrightarrow {{n_{\left( \alpha  \right)}}} \) và \(\overrightarrow {{n_{\left( \beta  \right)}}} \)  cùng phương.

b) Thay toạ độ của điểm \(M\left( { - 1;0;0} \right)\) vào phương trình mặt phẳng \(\left( \alpha  \right)\) ta có:

\( - 1 - 2.0 + 3.0 + 1 = 0\)

Như vậy mặt phẳng \(\left( \alpha  \right)\) đi qua điểm \(M\left( { - 1;0;0} \right)\).

Thay toạ độ của điểm \(M\left( { - 1;0;0} \right)\) vào phương trình mặt phẳng \(\left( \beta  \right)\) ta có:

\(2\left( { - 1} \right) - 4.0 + 6.0 + 1 =  - 1 \ne 0\)

Như vậy mặt phẳng \(\left( \beta  \right)\) không đi qua điểm \(M\left( { - 1;0;0} \right)\).

c) Theo câu a, do \(\overrightarrow {{n_{\left( \alpha  \right)}}} \) và \(\overrightarrow {{n_{\left( \beta  \right)}}} \) cùng phương, nên giá của \(\overrightarrow {{n_{\left( \alpha  \right)}}} \) và \(\overrightarrow {{n_{\left( \beta  \right)}}} \) song song hoặc trùng nhau. Mặt khác, do \(\overrightarrow {{n_{\left( \alpha  \right)}}} \) có giá vuông góc với \(\left( \alpha  \right)\), \(\overrightarrow {{n_{\left( \beta  \right)}}} \) có giá vuông góc với \(\left( \beta  \right)\), ta suy ra hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) song song hoặc trùng nhau. Hơn nữa, theo câu b, điểm \(M\left( { - 1;0;0} \right)\) thuộc \(\left( \alpha  \right)\) nhưng không thuộc \(\left( \beta  \right)\), suy ra \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) song song với nhau.

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 5 (SGK Chân trời sáng tạo - Tập 2 - Trang 39)

Hướng dẫn giải

Các mặt phẳng \(\left( E \right)\), \(\left( F \right)\), \(\left( H \right)\), \(\left( G \right)\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_{\left( E \right)}}}  = \left( {2; - 1;8} \right)\), \(\overrightarrow {{n_{\left( F \right)}}}  = \left( {8; - 4;32} \right)\), \(\overrightarrow {{n_{\left( H \right)}}}  = \left( {6; - 3;24} \right)\), \(\overrightarrow {{n_{\left( G \right)}}}  = \left( {10; - 5;41} \right)\).

Ta có \(\overrightarrow {{n_{\left( F \right)}}}  = 4\overrightarrow {{n_{\left( E \right)}}} \), nhưng \(7 \ne 4.1\). Vậy \(\left( E \right)\parallel \left( F \right)\).

Ta có \(\overrightarrow {{n_{\left( H \right)}}}  = 3\overrightarrow {{n_{\left( E \right)}}} \) và \(3 = 3.1\). Vậy \(\left( E \right) \equiv \left( H \right)\).

Ta có \(\frac{2}{{10}} = \frac{{ - 1}}{{ - 5}} \ne \frac{8}{{41}}\), suy ra \(\overrightarrow {{n_{\left( E \right)}}} \) và \(\overrightarrow {{n_{\left( G \right)}}} \) không cùng phương. Vậy \(\left( E \right)\) cắt \(\left( G \right)\).

(Trả lời bởi datcoder)
Thảo luận (1)

Vận dụng 4 (SGK Chân trời sáng tạo - Tập 2 - Trang 40)

Hướng dẫn giải

Dễ dàng thấy được \(M\left( {1;1;1} \right)\) không nằm trên \(\left( P \right)\).

Do \(\left( P \right)\parallel \left( Q \right)\), nên một vectơ pháp tuyến của \(\left( Q \right)\) là \(\vec n = \left( {6;5;1} \right)\).

Phương trình mặt phẳng \(\left( Q \right)\) đi qua \(M\left( {1;1;1} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {6;5;1} \right)\) là \(6\left( {x - 1} \right) + 5\left( {y - 1} \right) + 1\left( {z - 1} \right) = 0 \Leftrightarrow 6x + 5y + z - 12 = 0\)

(Trả lời bởi datcoder)
Thảo luận (1)

Khám phá 8 (SGK Chân trời sáng tạo - Tập 2 - Trang 40)

Hướng dẫn giải

a) Mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) có các vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {3;2;1} \right)\) và \(\overrightarrow {{n_2}}  = \left( {5; - 10;5} \right)\).

b) Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 3.5 + 2.\left( { - 10} \right) + 1.5 = 0\). Vậy hai vectơ \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_2}} \) có giá vuông góc với nhau. Do \(\overrightarrow {{n_1}} \) có giá vuông góc với \(\left( \alpha  \right)\), \(\overrightarrow {{n_2}} \) có giá vuông góc với \(\left( \beta  \right)\) nên \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) vuông góc với nhau.

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 6 (SGK Chân trời sáng tạo - Tập 2 - Trang 40)

Hướng dẫn giải

Các mặt phẳng \(\left( F \right)\), \(\left( H \right)\), \(\left( G \right)\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_{\left( F \right)}}}  = \left( {3;2;5} \right)\), \(\overrightarrow {{n_{\left( H \right)}}}  = \left( {1; - 4;1} \right)\), \(\overrightarrow {{n_{\left( G \right)}}}  = \left( {1; - 1;3} \right)\).

Ta có \(\overrightarrow {{n_{\left( F \right)}}} .\overrightarrow {{n_{\left( H \right)}}}  = 3.1 + 2.\left( { - 4} \right) + 5.1 = 0\). Vậy \(\left( F \right) \bot \left( H \right)\).

(Trả lời bởi datcoder)
Thảo luận (1)

Vận dụng 5 (SGK Chân trời sáng tạo - Tập 2 - Trang 40)

Hướng dẫn giải

Mặt phẳng \(\left( {Oxy} \right)\) có một vectơ pháp tuyến là \(\vec n = \left( {0;0;1} \right)\).

Do \(\left( P \right) \bot \left( {Oxy} \right)\), mà vectơ pháp tuyến \(\vec n\) của \(\left( {Oxy} \right)\) có giá vuông góc với \(\left( {Oxy} \right)\), nên giá của \(\vec n\) song song hoặc nằm trên \(\left( P \right)\). Như vậy \(\vec n\) là một vectơ chỉ phương của \(\left( P \right)\).

Mặt khác, theo hình vẽ, gọi \(A\) là điểm rơi của quả bóng trên mặt đất. Dễ dàng thấy được \({z_A} = 0\) và \({x_A} = 3\). Trên mặt phẳng \(\left( {Oxy} \right)\), ta có \(OA = 5\) và \({y_A} > 0\). Như vậy tung độ của \(A\) là \({y_A} = \sqrt {{5^2} - {3^2}}  = 4\). Vậy ta có \(A\left( {3;4;0} \right)\)

Theo hình vẽ,\(\left( P \right)\) đi qua điểm \(O\left( {0;0;0} \right)\) và \(A\left( {3;4;0} \right)\), nên \(\overrightarrow {OA} \left( {3;4;0} \right)\) là một vectơ chỉ phương khác của \(\left( P \right)\). Ta dễ thấy rằng \(\vec n = \left( {0;0;1} \right)\) và \(\overrightarrow {OA} \left( {3;4;0} \right)\) là hai vectơ không cùng phương, do đó \(\vec n\) và \(\overrightarrow {OA} \) là một cặp vectơ chỉ phương của \(\left( P \right)\).

Như vậy một vectơ pháp tuyến của \(\left( P \right)\) là:

\(\overrightarrow {{n_{\left( P \right)}}}  = \left[ {\vec n,\overrightarrow {OA} } \right] = \left( {0.0 - 1.4;1.3 - 0.0;0.4 - 0.3} \right) = \left( { - 4;3;0} \right)\).

Vậy phương trình mặt phẳng \(\left( P \right)\) đi qua \(O\left( {0;0;0} \right)\) và có một vectơ pháp tuyến \(\overrightarrow {{n_{\left( P \right)}}}  = \left( { - 4;3;0} \right)\) là \( - 4\left( {x - 0} \right) + 3\left( {y - 0} \right) + 0\left( {z - 0} \right) = 0 \Leftrightarrow  - 4x + 3y = 0\)

(Trả lời bởi datcoder)
Thảo luận (1)