§3. Tích của vectơ với một số

Bài 1 (SGK trang 17)

Hướng dẫn giải

\(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AC}\)

ABCD là hình bình hành nên

\(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\) (quy tắc hình bình hành của tổng)

\(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=\overrightarrow{AC}+\overrightarrow{AC}=2\overrightarrow{AC}\)

(Trả lời bởi Truy kích)
Thảo luận (2)

Bài 2 (SGK trang 17)

Hướng dẫn giải

Gọi G là giao điểm của AK, BM thì G là trọng tâm của tam giác.

Ta có = => =

= - = - = -

Theo quy tắc 3 điểm đối với tổng vec tơ:

= + => = - = (- ).

AK là trung tuyến thuộc cạnh BC nên

+ = 2 => - += 2

Từ đây ta có = + => = - - .

BM là trung tuyến thuộc đỉnh B nên

+ = 2 => - + = 2

=> = + .

(Trả lời bởi Kẹo dẻo)
Thảo luận (1)

Bài 3 (SGK trang 17)

Hướng dẫn giải

Ta có: \(\overrightarrow{MB}=3\overrightarrow{MC}\Rightarrow\overrightarrow{MB}=3\left(\overrightarrow{MB}+\overrightarrow{BC}\right)\)

\(\Rightarrow\overrightarrow{MB}=3\overrightarrow{MB}+3\overrightarrow{BC}\)

\(\Rightarrow-\overrightarrow{MB}=3\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{BM}=\dfrac{2}{3}\overrightarrow{BC}\). Mà \(\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}\) nên \(\overrightarrow{BM}=\dfrac{2}{3}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)

Theo quy tắc 3 điểm, ta có

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\Rightarrow\overrightarrow{AM}=\overrightarrow{AB}+\dfrac{3}{2}\overrightarrow{AC}-\dfrac{3}{2}\overrightarrow{AB}\)

\(\Rightarrow\overrightarrow{AM}=-\dfrac{1}{2}\overrightarrow{AB}+\dfrac{3}{2}\overrightarrow{AC}\) hay \(\overrightarrow{AM}=-\dfrac{1}{2}\overrightarrow{u}+\dfrac{3}{2}\overrightarrow{v}\)

(Trả lời bởi Truy kích)
Thảo luận (2)

Bài 4 (SGK trang 17)

Hướng dẫn giải

a) Gọi M là trung điểm của BC nên:

Ta có:

\dpi{100} \overrightarrow {DB} + \overrightarrow {DC} = \left( {\overrightarrow {DM} + \overrightarrow {MB} } \right) + \left( {\overrightarrow {DM} + \overrightarrow {MC} } \right) = 2\overrightarrow {DM} + \left( {\overrightarrow {MB} + \overrightarrow {MC} } \right) = 2\overrightarrow {DM} + \overrightarrow 0 = 2\overrightarrow {DM}

\dpi{100} \overrightarrow {MB} = - \overrightarrow {MC}

Mặt khác, do D là trung điểm của đoạn AM nên \dpi{100} \overrightarrow {DM} = - \overrightarrow {DA}

Khi đó: \dpi{100} 2\overrightarrow {DA} + \overrightarrow {DB} + \overrightarrow {DC} = 2\overrightarrow {DA} + 2\overrightarrow {DM} = 2\left (\overrightarrow {DA} + \overrightarrow {DM} \right ) = \overrightarrow 0

b) Ta có:

\dpi{100} 2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 4\overrightarrow {OD} \Leftrightarrow 2\left( {\overrightarrow {OA} - \overrightarrow {OD} } \right) + \left( {\overrightarrow {OB} - \overrightarrow {OD} } \right) + \left( {\overrightarrow {OC} - \overrightarrow {OD} } \right) = \overrightarrow 0

\dpi{100} \Leftrightarrow 2\overrightarrow {DA} + \overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow 0 luôn đúng theo câu a

Vậy:\dpi{100} \Leftrightarrow 2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 4\overrightarrow {O{\rm{D}}} , với O là điểm tùy ý

(Trả lời bởi Kẹo dẻo)
Thảo luận (1)

Bài 5 (SGK trang 17)

Hướng dẫn giải

N là trung điểm của CD:

2= + (1)

Theo quy tắc 3 điểm, ta có:

= + (2)

= + (3)

Từ (1), (2), (3) ta có: 2= +++

vì M là trung điểm của Ab nên: + =

Suy ra : 2 = +

Chứng minh tương tự, ta có 2 = +

Chú ý: Sau khi chứng minh 2 C = + ta chỉ cần chứng minh thêm + = + cũng được

Ta có: + = +++

= +++= ++

= nên ta có: +=+

và 2= + = +

(Trả lời bởi Kẹo dẻo)
Thảo luận (1)

Bài 6 (SGK trang 17)

Hướng dẫn giải

Ta có: 3 + 2 = => 3 = -2 => = -

Đẳng thức này chứng tỏ hi vec tơ , là hai vec tơ ngược hướng, do đó K thuộc đoạn AB

Ta lại có: = - => KA = KB

Vậy K là điểm chia trong đoạn thẳng AB theo tỉ số

(Trả lời bởi Kẹo dẻo)
Thảo luận (1)

Bài 7 (SGK trang 17)

Hướng dẫn giải

Gọi D là trung điểm của cạnh AB, ta có:

+ = 2

Đẳng thức đã cho trở thành:

2+ 2 =

=> + =

Đẳng thức này chứng tỏ M là trung điểm của CD

(Trả lời bởi Kẹo dẻo)
Thảo luận (1)

Bài 8 (SGK trang 17)

Hướng dẫn giải

Ta có : =

=

=

=> ++ = (++) = =

=> ++ = (1)

Gọi G là trong tâm của tam giác MPR, ta có:

+ + = (2)

Mặt khác : = +

= +

= +

=> ++ =(++)+ ++ (3)

Từ (1),(2), (3) suy ra: ++ =

Vậy G là trọng tâm của tam giác NQS

(Trả lời bởi Kẹo dẻo)
Thảo luận (1)

Bài 9 (SGK trang 17)

Hướng dẫn giải

Qua M kẻ các đường thẳng song song với các cạnh của tam giác

A1B1 // AB; A2C2 // AC; B2C1 // BC.

Dễ thấy các tam giác MB1C2; MA1C1;MA2B2 đều là các tam giác đều. Ta lại có MD B1C2 nên MD cũng là trung điểm thuộc cạnh B1C2 của tam giác MB1C2

Ta có 2 = +

Tương tự: 2 = +

2 = +

=> 2( ++) = (+) + ( + ) + (+)

Tứ giác là hình bình hành nên

+ =

Tương tự: + =

+ =

=> 2( ++) = ++

vì O là trọng tâm bất kì của tam giác và M là một điểm bất kì nên

++ = 3.

Cuối cùng ta có:

2( ++) = 3;

=> ++ =

(Trả lời bởi Kẹo dẻo)
Thảo luận (1)

Bài 1.20 (SBT trang 33)

Hướng dẫn giải

a) Theo giả thiết \(\overrightarrow{a}=\overrightarrow{b}\ne\overrightarrow{0}\) nên giả sử \(\overrightarrow{a}=m\overrightarrow{b}\) suy ra:
\(\overrightarrow{a}=m\overrightarrow{a}\Leftrightarrow\left(1-m\right)\overrightarrow{a}=\overrightarrow{0}\).
\(\Leftrightarrow1-m=0\) (vì \(\overrightarrow{a}\ne\overrightarrow{0}\) ).
\(\Leftrightarrow m=1\).
b) Nếu \(\overrightarrow{a}=-\overrightarrow{b};\overrightarrow{a}\ne\overrightarrow{0}\).
Giả sử \(\overrightarrow{a}=m\overrightarrow{b}\Leftrightarrow\overrightarrow{a}=-m\overrightarrow{a}\)\(\Leftrightarrow\overrightarrow{a}\left(1+m\right)=\overrightarrow{0}\)
\(\Leftrightarrow1+m=0\)\(\Leftrightarrow m=-1\).
c) Do \(\overrightarrow{a}\) , \(\overrightarrow{b}\) cùng hướng nên: \(m>0\).
Mặt khác: \(\overrightarrow{a}=m\overrightarrow{b}\Leftrightarrow\left|\overrightarrow{a}\right|=\left|m\right|.\left|\overrightarrow{b}\right|\)
\(\Leftrightarrow20=5.\left|m\right|\)\(\Leftrightarrow\left|m\right|=4\)
\(\Leftrightarrow m=\pm4\).
Do m > 0 nên m = 4.

(Trả lời bởi Bùi Thị Vân)
Thảo luận (2)