\(y=x^2+5+\dfrac{m}{x}\Rightarrow y'=2x-\dfrac{m}{x^2}\)
\(y'=2x+\dfrac{1}{x^2}\Leftrightarrow m=-1\)
\(y=x^2+5+\dfrac{m}{x}\Rightarrow y'=2x-\dfrac{m}{x^2}\)
\(y'=2x+\dfrac{1}{x^2}\Leftrightarrow m=-1\)
cho hàm số \(y=\dfrac{2x+m}{x-1}\) (m la tham so). biết rằng hàm số đã cho có đạo hàm y'(2)=-3. tính giá trị m?
Tìm m để y'>0:
a) \(y=x^3+3x^2+mx+2\)
b) \(y=\dfrac{x-m}{x+1}\)
c) \(y=\dfrac{x+2}{x-m}\)
d) \(y=2x^3-mx^2+3x\)
cho hso \(y=\dfrac{x^3}{3}-x^2+mx+m-1\). tìm tất cả các tham số m để y'≥0, \(\forall x\in\left(1,3\right)\)
cho hàm số \(y=\dfrac{x^2+mx-3}{x+2}\) (m la tham số). biết \(y'\left(-1\right)=4\). tính giá trị m?
tìm tất cả các tham số m để \(y'\ge0\) voi mọi x thuoc R
a) \(y=mx^3-\left(m+1\right)x^2+3mx-1\)
b) \(y=\dfrac{mx^3}{3}-mx^2+\left(2m-1\right)x-1\)
Cho hàm số y=f(x)=\(\dfrac{1}{3}x^3\) - \(2x^2\) +mx +5. tìm m để;
f'(x)\(\ge\)0 \(\forall\)x\(\in i\)
cho hso \(y=\dfrac{x^3}{3}-mx^2+mx+m-1\). tìm m để \(y'\ge0\) voi moi x thuoc R?
cho hàm số \(y=\dfrac{x^2+2x-3}{x+2}\). có bao nhiêu giá trị m để \(y'\left(-1\right)=4\)
Tính đạo hàm các hàm số sau:
a) \(y=\sqrt{x}+\dfrac{1}{\sqrt{x}}+0,1x^{10}\)
b) \(y=\dfrac{2x^2+x+1}{x^2-x+1}\)
c) \(y=\left(1+3x+5x^2\right)^4\)