\(y'=x^2-2mx+m\)
\(y'\ge0\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'\le0\end{matrix}\right.\Leftrightarrow m^2-m\le0\Leftrightarrow0\le m\le1\)
\(y'=x^2-2mx+m\)
\(y'\ge0\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'\le0\end{matrix}\right.\Leftrightarrow m^2-m\le0\Leftrightarrow0\le m\le1\)
tìm tất cả các tham số m để \(y'\ge0\) voi mọi x thuoc R
a) \(y=mx^3-\left(m+1\right)x^2+3mx-1\)
b) \(y=\dfrac{mx^3}{3}-mx^2+\left(2m-1\right)x-1\)
Tìm đk của m để hso \(y=x^3-x^2+mx-1\) có \(y'\ge0\) vơi moi x?
cho hso \(y=\dfrac{x^2-mx+m}{x^2+1}\). biết pt \(y'=0\) có 2 ng x1, x2. tìm m để \(x_1+x_2=3\)?
cho hso \(y=\dfrac{x^3}{3}-x^2+mx+m-1\). tìm tất cả các tham số m để y'≥0, \(\forall x\in\left(1,3\right)\)
tìm m để hso \(y=\dfrac{mx+1}{x-m}\) để y'<0, \(\forall x\in\left(0;1\right)\)
cho hso \(y=-x^3-3x^2+mx+1\). Tìm m để đạo hàm của hso có GTLN \(\left[0;1\right]\) là 10?
cho hso \(y=mx^4+mx^2+2m-3\). tìm tất cả các tham số m để y'\(\ge\)0, \(\forall x\in\left(0;+\infty\right)\)
tìm m để hso \(y=\dfrac{mx+1}{x-2}\) có đạo hàm luôn âm trên từng khoảng xác định
Tìm m để y'>0:
a) \(y=x^3+3x^2+mx+2\)
b) \(y=\dfrac{x-m}{x+1}\)
c) \(y=\dfrac{x+2}{x-m}\)
d) \(y=2x^3-mx^2+3x\)