Câu 1 : Kết quả của giới hạn lim \(\frac{-3n^2+5n+1}{2n^2-n+3}\) là :
A. \(\frac{3}{2}\) B. \(+\infty\) C. \(-\frac{3}{2}\) D. 0
Câu 2 : Gía trị của giới hạn lim \(\frac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\) là :
A. 1 B. 0 C. 3 D. \(+\infty\)
Câu 3 : Biết rằng lim \(\left(\frac{\left(\sqrt{5}\right)^n-2^{n+1}+1}{5.2^n+\left(\sqrt{5}\right)^{n+1}-3}+\frac{2n^2+3}{n^2-1}\right)=\frac{a\sqrt{5}}{b}+c\) với a , b , c \(\in\) Z . Tính giá trị của biểu thức S = a2 + b2 + c2
A. S = 26 B. S = 30 C. S = 21 D. S = 31
Câu 4 : Cho un = \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\right)\) thì lim \(\left(u_n-\frac{1}{2}\right)\) bằng
A. 0 B. -1 C. 1 D. \(\frac{1}{2}\)
Câu 5 : Tìm giá trị thực của tham số m để hàm số y = f (x ) = \(\left\{{}\begin{matrix}\frac{x^2-x-2}{x-2}khix\ne2\\mkhix=2\end{matrix}\right.\) liên tục tại x = 2
A. m = 3 B. m = 1 C. m = 2 D. m = 0
Câu 6 : Cho hàm số f(x) = \(\left\{{}\begin{matrix}\frac{x^2+4x+3}{x+3},khix>-3\\2a,khix\le-3\end{matrix}\right.\) . giá trị của để f ( x ) liên tục tại x0 = -3 là
A. 1 .B. 2 C. -1 D. -2
Câu 7 : Hàm số y = f (x) = \(\frac{x^3+xcosx+sinx}{2sinx+3}\) liên tục trên
A. [-1;1] B. [1;5] C. \(\left(-\frac{3}{2};+\infty\right)\) D. R
Câu 8 : Kết quả của giới hạn \(lim_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt[3]{x^3-x^2}\right)\) là :
A. \(+\infty\) B. \(-\infty\) C. 0 D. \(\frac{5}{6}\)
Câu 9 : Với a là số thực khác 0 , \(lim_{x\rightarrow a}\frac{x^2-\left(a+1\right)x+a}{x^2-a^2}\) bằng :
A. a - 1 B. a + 1 C. \(\frac{a-1}{2a}\) D. \(\frac{a+1}{2a}\)
Câu 10 : giá trị của \(lim_{x\rightarrow+\infty}\frac{\sqrt{2+2x}-\sqrt{2x^2+2}}{2x}\) bằng
A. \(-\infty\) B. \(\sqrt{2}-\sqrt{3}\) C. \(+\infty\) D. \(-\sqrt{3}\)
Câu 11 : Kết quả của giới hạn \(lim_{x\rightarrow1^+}\frac{-2x+1}{x-1}\)là :
A. \(\frac{2}{3}\) B. \(-\infty\) C. \(\frac{1}{3}\) D. \(+\infty\)
Câu 12 : Đạo hàm của hàm số y = cot x là hàm số :
A. \(\frac{1}{sin^2x}\) B. \(-\frac{1}{sin^2x}\) C. \(\frac{1}{cos^2x}\) D. \(-\frac{1}{cos^2x}\)
Câu 13 : Đạo hàm của hàm số y = \(\left(x^3-2x^2\right)^{2020}\) là :
A. y' = \(2020\left(x^3-2x^2\right)^{2021}\)
B. y' = \(2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)
C. y' = \(2019\left(x^3-2x^2\right)^{2020}\left(3x^2-4x\right)\)
D. y' = \(2019\left(x^3-2x^2\right)\left(3x^2-2x\right)\)
Câu 14 : Đạo hàm của hàm số y = \(\sqrt{4x^2+3x+1}\) là hàm số nào sau đây ?
A. y = \(\frac{1}{2\sqrt{4x^2+3x+1}}\)
B. y = \(\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)
C. y = 12x + 3
D. y = \(\frac{8x+3}{\sqrt{4x^2+3x+1}}\)
Câu 15 : Tính đạo hàm của hàm số y = (x - 5)4
A. y' = ( x - 5 )3 B. y' = -20 (x-5)3 C. y' = -5(x-5)3 D. y' = 4(x-5)3
Câu 16 : Tính đạo hàm của hàm số y = \(\sqrt{cos2x}\)
A. \(y^'=-\frac{sin2x}{2\sqrt{cos2x}}\)
B. y' = \(\frac{sin2x}{\sqrt{cos2x}}\)
C. y' = \(\frac{sin2x}{2\sqrt{cos2x}}\)
D. y' = \(-\frac{sin2x}{\sqrt{cos2x}}\)
Câu 17 : Đạo hàm của hàm số y = \(x^4+\frac{1}{x}-\sqrt{x}\) là :
A. y' = \(4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)
B. y' = \(4x^3+\frac{1}{x^2}+\frac{1}{2\sqrt{x}}\)
C. y' = \(4x^3+\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)
D. y' = \(4x^3-\frac{1}{x^2}+\frac{1}{2\sqrt{x}}\)
Câu 18 : Tiếp tuyến với đồ thị y = x3 - x2 tại điểm có hoành độ x0 = -2 có phương trình là :
A. y = 20x + 14 B. y = 20x + 24 C. y = 16x + 20 D. y = 16x - 56
Câu 19 : Tính đạo hàm cấp hai của hàm số y = \(\frac{1}{x}\)
A. y'' = \(-\frac{2}{x^3}\)
B. y'' = \(-\frac{1}{x^2}\)
C. y'' = \(\frac{1}{x^2}\)
D. y'' = \(\frac{2}{x^3}\)
Câu 20 : Hàm số y = cot x có đạo hàm là :
A. \(y^'=-\frac{1}{sin^2x}\)
B. y' = - tan x
C. y' = \(-\frac{1}{cos^2x}\)
D. y' = 1 + cot2x
Câu 21 : Hàm số y = \(x-\frac{4}{x}\) có đạo hàm bằng
A. \(\frac{-x^2+4}{x^2}\)
B. \(\frac{x^2+4}{x^2}\)
C. \(\frac{-x^2-4}{x^2}\)
D. \(\frac{x^2-4}{x^2}\)
Câu 22 : Trong các dãy số (un) sau , dãy số nào có giới hạn bằng \(+\infty\) ?
A. \(u_n=\frac{1}{n}\)
B. \(u_n=\left(\frac{2}{3}\right)^n\)
C. \(u_n=\left(-\frac{1}{2}\right)^n\)
D. \(u_n=3^n\)
1.giải pt \(\left(1+\tan x\right)\cos^3x+\left(1+\cot x\right)\sin^3x=\sqrt{2\sin2x}\)
2.tìm các nghiệm trong khoảng \(\left(-\pi;\pi\right)\) của phương trình
\(2\sin\left(3x+\frac{\pi}{4}\right)=\sqrt{1+8\sin2x\cos^22x}\)
Tính các giới hạn sau:
a) \(\lim\limits_{x\rightarrow2}\left(\frac{\sqrt{x^2+60}-2x^2}{x^2-1}\right)\)
b) \(\lim\limits\left(\frac{1+2+3+........+2n}{1+\frac{1}{2}+\frac{1}{4}+.......+\frac{1}{4n^2}}\right)\)
Câu 1 : Cho hàm số f (x) = \(-x^3+3mx^2-12x+3\) với m là tham số . Số giá trị nguyên của m \(\in\left[-1;5\right]\) để f' (x) \(\le0\) với mọi x \(\in\) R
A. 3 B. 4 C. 6 D. 5
Câu 2 : Cho hàm số f(x) = \(\frac{mx+10}{2x+m}\) với m là tham số thực . Số giá trị nguyên của m để f' (x) < 0 , \(\forall x\in\left(0;2\right)\) là
A. 5 B. 4 C. 6 D. 3
Câu 3 : Cho hàm số \(y=\frac{2x}{x+1}\) có đồ thị (C) . Phương trình tiếp tuyến của (C) song song với đường thẳng \(\left(\Delta\right)\) : x - 2y + 1 = 0 là
A. y = x + 9 B. y = \(\frac{1}{2}x+\frac{9}{2}\) C. y = x - 9 D. y = \(\frac{1}{2}x-\frac{9}{2}\)
Câu 4 : Biết lim \(\frac{\sqrt{2n^2+1}-3n}{n+2}=\sqrt{a}-b\) . Tính a + b
A. 5 B. -3 C. -1 D. 2
Câu 5 : Tìm lim \(\frac{2x^2-\left(a+1\right)x-a^2+a}{x^2-a^2}\left(x\rightarrow a\right)\) theo a
A. \(\frac{3a+1}{2a}\) B. \(\frac{a-1}{2a}\) C. \(\frac{3a-1}{2a}\) D. \(\frac{3a-1}{2}\)
giải chi tiết từng câu giúp mình với ạ
Giải các phương trình :
a) \(\cos^2x+\cos^22x-\cos^23x-\cos^24x=0\)
b) \(\cos4x\cos\left(\pi+2x\right)-\sin2x\cos\left(\dfrac{\pi}{2}-4x\right)=\dfrac{\sqrt{2}}{2}\sin4x\)
c) \(\tan\left(120^0+3x\right)-\tan\left(140^0-x\right)=2\sin\left(80^0+2x\right)\)
d) \(\tan^2\dfrac{x}{2}+\sin^2\dfrac{x}{2}\tan\dfrac{x}{2}+\cos^2\dfrac{x}{2}+\cot^2\dfrac{x}{2}+\sin x=4\)
e) \(\dfrac{\sin2t+2\cos^2t-1}{\cot t-\cot3t+\sin3t-\sin t}=\cos t\)
Cho ba số thực dương x,y,z thỏa mãn \(4x^2+4y^2+z^2=\frac{1}{2}\left(2x+y+z\right)^2.\)Tìm giá trị lớn nhất của biểu thức:
\(P=\frac{8x^3+8y^3+z^3}{\left(2x+2y+z\right)\left(4xy+2yz+2xz\right)}\)
Tìm giá trị nhỏ nhất \(P=\left(x^4+y^4+z^4\right)\left(\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\right)\) biết x,y,z nguyên dương, \(x^2+y^2\le\frac{1}{2}z^2\)
Giải: \(\dfrac{sin2x-2cos^2x-5sinx-cosx+4}{2cosx+\sqrt{3}}=0\)
1. Phương trình tiếp tuyến của đồ thị hàm số y = \(\frac{x-1}{x+2}\) tại giao điểm của đồ thị với trục tung là:
A. y = \(\frac{3}{4}x\) + \(\frac{1}{2}\)
B. y = \(\frac{3}{4}x\)
C. \(\frac{3}{4}x\) - \(\frac{1}{2}\)
D. - \(\frac{3}{4}x\) - \(\frac{1}{2}\)
2. Cho hình chóp S.ABC có các cạnh SA, SB, SC đôi một vuông góc và SA= SB= SC. Gọi I là trung điểm của AB. Khi đó góc giữa hai đường thẳng SI và BC bằng:
A. 120o
B. 60o
C. 90o
D. 30o