Giải pt
x/x^2+5x+6=2/x^2+3x+1
Giải PT sau:
a, 3x - 7 = 0
b, 8 - 5x = 0
c, 3x - 2 = 5x + 8
d, \(\dfrac{3x-2}{3}\) = \(\dfrac{1-x}{2}\)
e, ( 5x + 1)(x - 3) = 0
f, (x + 1)(2x - 3) = 0
g, 4x(x + 3) - 5(x + 3) = 0
h, 8(x - 6) - 2x(6 - x) = 0
i, \(\dfrac{2}{x-1}\) + \(\dfrac{1}{x}\) = \(\dfrac{2x+5}{x^2-x}\)
k, \(\dfrac{3}{x+2}\) - \(\dfrac{2}{x-2}\) = \(\dfrac{2-x}{x^2-4}\)
m, \(\dfrac{3}{x}\) - \(\dfrac{2}{x-3}\) = \(\dfrac{4-x}{x^2-3}\)
n,\(\dfrac{3}{2x+10}\)+ \(\dfrac{2x}{x^2-25}\) = \(\dfrac{3}{x-5}\)
u, \(\dfrac{2}{x+3}\) - \(\dfrac{3}{x-2}\) = \(\dfrac{x+4}{\left(x+3\right)\left(x-2\right)}\)
Giải pt
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{5x-3}{3x-x^2}\)
1. Phân tích:
a) A= x^3 + y^3 + xy(xy+1)
b) B= x^4 +4x^3 - 6x^2 - 4x + 5
2.
a) Giải pt: \(\frac{5x-3}{x+2}-\frac{x+3}{x-6}=\frac{9x^2-28x+12}{x^2-4x-12}\)
b) Giải và biện luận phương trình ẩn x theo m: /3x-5/=1-m
Giải phương trình :
a,\(\dfrac{2}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}=\dfrac{1}{x^2-3x+2}\)
b, \(\dfrac{2x+3}{x^2+3x+2}+\dfrac{6}{x^2-x-6}=\dfrac{2x-2}{x^2-2x-3}\)
1,Giải Pt
a,\(\frac{3x-7}{2}+\frac{x+1}{3}=-16\)
b,\(x-\frac{x+1}{3}=\frac{2x+1}{5}\)
c,\(\frac{7-3x}{12}+\frac{3}{4}=2\left(x-2\right)+\frac{5\left(5-2x\right)}{6}\)
e,\(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
Giair pt:
c, x ( 3x-1) (3x+1) (3x+2) =8
d, (x+1) (2x+3) (2x+5) (x+3)=45
e,x4+ 3x3 - 15x2 - 19x + 3 = 0
f, \(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}=\frac{1}{3}\)
h,\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
Giải các phương trình sau: \(\dfrac{x}{x^2+5x+6}=\dfrac{2}{x^2+3x+2}\)
Giải các phương trình sau
a) |x-2| = 3
b) |x+1| = |2x+3|
c) |3x| = x+6
d) |x-5| = 13-2x
e) |5x-1| = x-12
f) |-2x| = 3x+4
g) |2x-1| = 6-x
h) |-1+5x| = 8-x
i) |-2x+1| = x+3
k) |-2-5x| = -4x+7