Bµi 5: Gi¶i PT sau.
\(a,\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
b,\(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
\(c,\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
d) (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
e) x4 + 2x3 + 4x2 + 2x + 1 = 0
\(f,\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
3) \(\frac{1-x}{x+1}-\frac{3+2x}{x+1}=0\)
13) \(\frac{x+2}{x}-\frac{x^2+5x+4}{x\left(x+2\right)}=\frac{x}{x+2}\)
14) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{20}{\left(x+1\right)\left(2-x\right)}\)
16) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
17) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
18) \(\frac{x-1}{x}+\frac{1}{x+1}=\frac{2x-1}{2x^2+2}\)
19) \(\frac{2}{x+1}-\frac{3x+1}{\left(x+1\right)}=\frac{1}{\left(x+1\right)\left(x-2\right)}\)
20) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
bài 1 : thực hiện các phép tính
a. \(\frac{4x-1}{3x^2y}-\frac{7x-1}{3x^2y}\)
b.\(\frac{4x+1}{2}-\frac{3x+2}{3}\)
c.\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\)
d.\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
e.\(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)
f.\(\frac{x+3}{x^2-1}-\frac{1}{x^2+x}\)
g.\(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
h.\(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}\)
i.\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
bài 1: Thực hiện các phép tính
a.\(\frac{4x-1}{3x^2y}-\frac{7x-2}{3x^2y}\)
b.\(\frac{4x+1}{2}-\frac{3x+2}{3}\)
c.\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\)
d.\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
e. \(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)
f..\(\frac{x+3}{x^2-1}-\frac{1}{x^2+x}\)
g. \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
h.\(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}\)
i.\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
giải phương trình
a) \(\frac{4x-8}{2x^2+1}=0\)
b)\(\frac{x^2-x-6}{x-3}=0\)
c)\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
d)\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
1,Giải Pt
a,\(\frac{3x-7}{2}+\frac{x+1}{3}=-16\)
b,\(x-\frac{x+1}{3}=\frac{2x+1}{5}\)
c,\(\frac{7-3x}{12}+\frac{3}{4}=2\left(x-2\right)+\frac{5\left(5-2x\right)}{6}\)
e,\(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
k, x3 - x2 - 17x - 15 = 0
l, x3 +4x2+x- 6=0
m, x4+2x3-13x2 -14x+ 24 =0
n, \(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
i, (x-4) (x-5) (x-6) (x-7) = 1680
p, \(\frac{1}{x^2-5x-6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}=\frac{1}{8}\)
a) (x-5).(x-1) > 0
b) (2x-3).(x+1) < 0
c) \(2x^2-3x+1>0\)
d) \(\frac{3x-2}{x-2}>0\)
e) \(\frac{3x-1}{2x-3}< \frac{3}{2}\)
f) \(\frac{x-5}{x^2+1}< 0\)
g) \(\frac{2x-1}{5x-1}< \frac{2}{5}\)
Giải các phương trình sau
a) \(\frac{7x-3}{x-1}=\frac{2}{3}\)
b) \(\frac{2\left(3-7x\right)}{1+x}=\frac{1}{2}\)
c) \(\frac{1}{x-2}+3=\frac{3-x}{x-2}\)
d) \(\frac{8-x}{x-7}-8=\frac{1}{x-7}\)
e) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
f)\(\frac{1}{x-1}+\frac{2}{x+1}=\frac{x}{x^2-1}\)
g) \(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
h)\(5+\frac{76}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
i) \(\frac{90}{x}-\frac{36}{x-6}=2\)
k) \(\frac{1}{x}+\frac{1}{x=10}=\frac{1}{12}\)
l) \(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\)
m) \(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\)
n) \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
o)\(\frac{x}{2x+6}-\frac{x}{2x+2}=\frac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
p) \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)
q) \(\frac{5}{x+7}+\frac{8}{2x+14}=\frac{3}{2}\)
r) \(\frac{x-1}{x}=\frac{1}{x+1}=\frac{2x-1}{x^2+x}\)