Xét một hypebol (H) với các kí hiệu như trong định nghĩa. Chọn hệ trục toạ độ Oxy có gốc O là trung điểm của \({F_1}{F_2}\), tia Ox trùng tia\(O{F_2}\) , (H.7.26). Nêu toạ độ của các tiêu điềm \({F_1},{F_2}\). Giải thích vì sao điểm M(x; y) thuộc (H) khi và chỉ khi \(\left| {\sqrt {{{\left( {x + c} \right)}^2} + {y^2}} - \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} } \right| = 2a\).
Ta có: \(M{F_1} = \sqrt {{{\left( {x + c} \right)}^2} + {y^2}} ,M{F_2} = \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} \).Vậy để điểm M thuộc Hyperbol khi và chỉ khi \(\left| {M{F_1} - M{F_2}} \right| = 2a\) hay\(\left| {\sqrt {{{\left( {x + c} \right)}^2} + {y^2}} - \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} } \right| = 2a\)