Bài 1: Tính đơn diệu và cực trị của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Xét một chất điểm chuyển động dọc theo trục Ox. Tọa độ của chất điểm tại thời điểm t được xác định bởi hàm số x(t) = t3 – 6t2 + 9t với t ≥ 0. Khi đó x'(t) là vận tốc của chất điểm tại thời điểm t, kí hiệu v(t); v'(t) là gia tốc chuyển động của chất điểm tại thời điểm t, kí hiệu a(t).

a) Tìm các hàm v(t) và a(t).

b) Trong khoảng thời gian nào vận tốc của chất điểm tăng, trong khoảng thời gian nào vận tốc của chất điểm giảm?

datcoder
28 tháng 10 lúc 6:56

a) \(v(t) = x'(t) = 3{t^2} - 12t + 9\)

\(a(t) = v'(t) = 6t - 12\)

b) Tập xác định: \(D = [0; + \infty ]\)

\(a(t) = 0 \Leftrightarrow t = 2\)

Bảng biến thiên:

Vậy trong khoảng từ t = 0 đến t = 2 thì vận tốc của chất điểm giảm, từ t = 2 trở đi thì vận tốc của chất điểm tăng