a) \(\cos^2\)α+ \(\cos^2\)β + \(\cos^2\)α.\(\sin^2\)β +\(^{ }\sin^2\)α
b) 2(\(\sin\)α - \(\cos\)α)\(^2\) - ( \(\left(\sin\alpha+\cos\alpha\right)^{2^{ }}+\left(\sin\alpha.\cos\alpha\right)\)
c) \(\left(\tan\alpha-\cot\alpha\right)^2-\left(\tan\alpha+\cos\alpha\right)^2\)
a) Cho góc α < 90o có sin α = \(\dfrac{1}{3}\). Tính cos α, tg α, ctg α.
b) Cho góc β < 90o có tan β = 2. Tính sin β, cos β.
Xét hình bs 4 :
Tìm đẳng thức đúng :
(A) \(\cos\alpha=\cos\beta\) (B) \(\cos\alpha=tg\beta\) (C) \(\cos\alpha=cotg\beta\) (D)\(\cos\alpha=\sin\beta\)
\(K=\sin^6\alpha+\cos^6\beta+3.\sin^2\alpha.\cos^2\alpha\)
Bài 1: Cho \(\alpha\&\beta\) là hai góc phụ nhau . Biết \(\cos\alpha=\dfrac{1}{2}\). Tính giá trị của biểu thức : P = \(3\sin^2\alpha+4\tan^3\beta\)
Bài 2: a) Tính P = \(4\sin^2\alpha-6\cos^2\alpha\) , biết \(\cos\alpha=\dfrac{4}{5}\)
b) Cho \(\alpha\) là góc nhọn . Rút gọn biểu thức : A = \(\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
Giúp mình vs cần gấp lắm !!!
Cho hai góc nhọn α và β thỏa mãn \(0^o\)<α+β<\(90^0\). Chứng minh: cos(α+β)=cosα.cosβ-sinα.sinβ
Hãy đơn giản các biểu thức:
a) 1-sin2α
b) (1-cosα)(1+cosα)
c) 1+cos2α+sin2α
d) sinα-sinα cos2α
e) sin4α+cos4α+2sin2α cos2α
f) tan2α-sin2α tan2α
g) cos2α+tan2α cos2α
h) tan2α (2cos2α+sin2α-1)
Xét hình bs 4 :
Tìm đẳng thức đúng :
(A) \(\sin\alpha=\sin\beta\) (B) \(\sin\alpha=\cos\beta\) (C) \(\sin\alpha=tg\beta\) (D) \(\sin\alpha=cotg\beta\)
CMR
a)\(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
b)\(\frac{\tan\alpha+1}{\tan\alpha-1}=\frac{1+\cot\alpha}{1-\cot\alpha}\)
c) \(\tan^2\alpha-\sin^2\alpha=\tan^2\alpha.\sin^2\alpha\)
d)\(\frac{1-4\sin^2\alpha.\cos^2\alpha}{\left(\sin\alpha-\cos\alpha\right)^2}=\left(\sin\alpha+\cos\alpha\right)^2\)