Thay : “số tự nhiên n chia hết cho 6” bới P, “số tự nhiên n chia hết cho 3” bởi Q, ta được mệnh đề R có dạng: “Nếu P thì Q”
Thay : “số tự nhiên n chia hết cho 6” bới P, “số tự nhiên n chia hết cho 3” bởi Q, ta được mệnh đề R có dạng: “Nếu P thì Q”
Cho n là số tự nhiên. Xét các mệnh đề:
P: “n là một số tự nhiên chia hết cho 16”.
Q: “n là một số tự nhiên chia hết cho 8”.
a) Với n = 32, phát biểu mệnh đề P ⇒ Q và xét tính đúng sai của mệnh đề đó.
b) Với n = 40, phát biểu mệnh đề đảo của mệnh đề P ⇒ Q và xét tính đúng sai của mệnh đề đó.
Cho mệnh đề “n chia hết cho 3” với n là số tự nhiên.
a) Phát biểu “Mọi số tự nhiên n đều chia hết cho 3” có phải là mệnh đề không?
b) Phát biểu “Tồn tại số tự nhiên n đều chia hết cho 3” có phải là mệnh đề không?
Xét câu “n chia hết cho 3” với n là số tự nhiên.
a) Ta có thể khẳng định được tính đúng sai của câu trên hay không?
b) Với n = 21 thì câu ”21 chia hết cho 3” có phải là mệnh đề toán học hay không? Nếu là mệnh đề toán học thì mệnh đề đó đúng hay sai?
c) Với n = 10 thì câu ”10 chia hết cho 3” có phải là mệnh đề toán học hay không? Nếu là mệnh đề toán học thì mệnh đề đó đúng hay sai?
Phát biểu mệnh đề phủ định của mỗi mệnh đề sau:
a) Tồn tại số nguyên chia hết cho 3
b) Mọi số thập phân đều viết được dưới dạng phân số.
Cho tam giác ABC. Xét các mệnh đề:
P: “Tam giác ABC cân”.
Q: “Tam giác ABC có hai đường cao bằng nhau”.
Phát biểu mệnh đề \(P \Leftrightarrow Q\) bằng bốn cách.
Cho tam giác ABC. Xét mệnh đề dạng \(P \Rightarrow Q\) như sau:
“Nếu tam giác ABC vuông tại A thì tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)”.
Phát biểu mệnh đề \(Q \Rightarrow P\) và xác định tính đúng sai của hai mệnh đề \(P \Rightarrow Q\) và \(Q \Rightarrow P\).
Trong các phát biểu sau, phát biểu nào là mệnh đề toán học?
a) Tích hai số thực trái dấu là một số thực âm.
b) Mọi số tự nhiên đều là dương.
c) Có sự sống ngoài Trái Đất
d) Ngày 1 tháng 5 là ngày Quốc tế Lao động.
Dùng kí hiệu “\(\forall \)” hoặc “\(\exists \)” để viết các mệnh đề sau:
a) Có một số nguyên không chia hết cho chính nó.
b) Mọi số thực cộng với 0 đều bằng chính nó.
Lập mệnh đề phủ định của mỗi mệnh đề sau và nhận xét tính đúng sai của mệnh đề phủ định đó.
a) A: “\(\frac{5}{{1,2}}\) là một phân số”.
b) B: “Phương trình \({x^2} + 3x + 2 = 0\) có nghiệm”.
c) C: “\({2^2} + {2^3} = {2^{2 + 3}}\)”.
d) D: “Số 2 025 chia hết cho 15”.