Cho các số thực dương a,b,c thỏa mãn abc=1 . Tìm GTLN của biểu thức :
\(T=\frac{1}{\sqrt[3]{a}+\sqrt[3]{b}+1}+\frac{1}{\sqrt[3]{b}+\sqrt[3]{c}+1}+\frac{1}{\sqrt[3]{c}+\sqrt[3]{a}+1}\)
1. Cho các số thực dương x,y thỏa mãn x + xy + y = 8. Tính GTNN của biểu thức \(A=x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
2. Cho a,b,c > 1. Tính GTNN của biểu thức \(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
3. Cho 2 số \(x,y\ne0\) thỏa mãn đẳng thức sau: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\). Tính GTLN của biểu thức \(C=\frac{1}{xy}\)
4. Cho các số thực dương a,b,c thỏa mãn abc = 1. Cmr: \(D=\frac{a^4}{b^2\left(c+2\right)}+\frac{b^4}{c^2\left(a+2\right)}+\frac{c^4}{a^2\left(b+2\right)}\ge1\)
5. Cho a,b,c là các số dương không lớn hơn 1. Cmr: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
6. Cho 2 số thực x,y thỏa mãn điều kiện \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\). Cmr: \(\frac{9+3\sqrt{21}}{2}\le x+y\le9+3\sqrt{15}\).
7. Cho x,y,z là các số thực dương thỏa mãn x + y + z = 1. Cmr: \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\).
8. Cho x,y,z là các số thực dương thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015.\) Tìm GTNN của biểu thức: \(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\).
9. Cho các số thực dương x,y thỏa mãn \(\left(x+y-1\right)^2=xy\). Tìm GTNN của biểu thức: \(M=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\).
10. Tìm m để phương trình \(mx^2-\left(5m-2\right)x+6m-5=0\) có 2 nghiệm nghịch đảo nhau.
11. Cho 2 số thực dương x,y thỏa mãn \(x^2+y\ge1\). Tìm GTNN của biểu thức: \(N=y^2+\left(x^2+2\right)^2\).
12. Cho 9 số thực \(a_1,a_2,...,a_9\) không nhỏ hơn -1 và \(a_1^3+a_2^3+...+a_9^3=0\). Tính GTLN của biểu thức \(Q=a_1+a_2+...+a_9\).
13. cho a,b,c > 0 và a + b + c = 1. Cmr: \(\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}< 78\)
Mn làm giúp mk với. Mk đang cần gấp
1.Cho a,b là các số dương thay đổi thỏa mãn a+b=2
Tính GTNN biểu thức D=\(\frac{a+b}{ab}+\frac{ab}{a+b}\)
2. Cho 3 số dương x,y,z thỏa mãn x+y+z=1
Tìm GTLN của biểu thức B=\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
3. Tính GTNN của biểu thức T=\(\sqrt{x^2-x+2}+\sqrt{x^2+x+2}\)
4. Tính GTLN A=\(\sqrt{x-1}+\sqrt{y-2}\) biết x+y=4
Cho a,b,c là các số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\).Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ca+a^2}}\)
Cho các số dương a, b, c thỏa mãn ab + ac + bc = 1.
Tìm GTLN của bt: \(P=\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{2c}{\sqrt{1+c^2}}\)
Cho x, y, z là các số dương thỏa x+y+z ≤ √3. Tìm GTLN
P=\(\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\)
Cho các số thực dương a,b,c thỏa mãn ab+bc+ac=1
Tìm giá trị lớn nhất của biểu thức \(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt[]{1+b^2}}+\frac{c}{\sqrt{1+c^2}}-a^2-28b^2-28c^2\)
1) Tìm tất cả các giá trị nguyên của x để A=\(\frac{x^4+x^2+x+2}{x^4+3x^3+7x^2+3x+6}\) nhận giá trị là một số nguyên.
2) Cho các số dương a, b, c thỏa mãn a+b+c=4. Tìm GTNN của của biểu thức: P=\(\frac{\sqrt{a}}{\sqrt{a}+3\sqrt{b}}+\frac{\sqrt{b}}{\sqrt{b}+3\sqrt{c}}+\frac{\sqrt{c}}{\sqrt{c}+3\sqrt{a}}\)
Cho các số thực dương a, b, c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\). Tìm GTNN của biểu thức:
P=\(\frac{1}{\sqrt{a^2-ab+3b^2+1}}+\frac{1}{\sqrt{b^2-bc+3c^2+1}}+\frac{1}{\sqrt{c^2-ca+3a^2+1}}\)