Tọa độ đỉnh \(\left(\dfrac{-b}{2a},\dfrac{-\Delta}{4a}\right)\)
Trục đối xứng \(x=\dfrac{-b}{2a}\)
Tọa độ đỉnh \(\left(\dfrac{-b}{2a},\dfrac{-\Delta}{4a}\right)\)
Trục đối xứng \(x=\dfrac{-b}{2a}\)
Xác định tọa độ giao điểm của parabol \(y=ax^2+bx+c\) với trục tung ?
Tìm điều kiện để parabol này cắt trục hoành tại hai điểm phân biệt và viết tọa độ của các giao điểm trong trường hợp đó ?
Biết parabol y=ax2+bx+c đi qua gốc tọa đồ và có đỉnh I(-1;-3) . Giá trị của a,b,c là
Xác định hàm số bậc hai y = ax2 + bx + c có đồ thị là parabol (P) nhận đường thẳng x = 2 làm trục đối xứng và đi qua các điểm M(1;0) và N(4;-3)
BT1: Lập bảng biến thiên và vẽ đồ thị :
a .y=x2-3x+2
b .y=-2x-x+3
c. y=x2+2x+1
BT2: Xác định parabol y=ax2-4x+c biết đồ thị hàm số của nó
a. Đi qua 2 điểm A(1;3),B(-4;4)
b. Đi qua C(-1;5) và có trục đối xứng bằng 2
c. Có toạ độ đỉnh (4;2)
trong mặt phẳng với hệ tọa độ oxy , cho hình thang vuông ABCD , có B=C=90độ . Phương trình các đường thẳng AC và BD lần lượt là x+2y=0 và x-y-3=0. Xác định tọa độ các đỉnh của hình thang ABCD biết trung điểm AD là m( -3/2; -3/2)
Lập bảng biến thiên f(x)=ax2+bx+c là parabol có đỉnh(1/2, 5/4) và cắt trục tung tại điểm có tung độ bằng 2.
Trong mặt phẳng hệ tọa độ Oxy , cho hình chữ nhật ABCD tâm O. Biết phương trình đường thẳng AB:x--y+5=0 và trung điểm M của cạnh BC thuộc đường thẳng x+3y-6=0, xác định tọa độ các đỉnh của hình chữ nhật ABCD
Bt1:Liệt kê các phần tử trong tập hợp:
B=4x+3:x=1,2,3,4,5,6
Bt2: Lập bảng biến thiên và vẽ đồ thị:
a .y=x2-3x+2
b. y=-2x2-x+3
c .y=x2+2x+1
Bt3:xác định parabol y=ax2-4x+c biết đồ thị hàm số của nó
a .Đi qua 2 điểm A(1;3),B(-4;4)
b. Đi qua C(-1;5) và có trục đối xứng bằng 2
c. Có toạ độ đỉnh (4;2)
1) Xác định Parabol y = ax2 +bx+c, biết parabol có đỉnh nằm trên trục hoành và đi qua hai điểm A (0;1) và B(2;1)
2) BIẾT rằng (P):y=ax2+bx+c đi qua điểm A(2;3) và có đỉnh a khác 0. Tìm a,b,c
3) Tìm giá trị lớn nhất và nhỏ nhất của hàm số y=x2-4x+3 trên đoạn [-2;1]
Giúp em vs ạ TvT