1) Thuc hien phep tinh cong 2 phan thuc \(\dfrac{2x}{x^2-2x+1}+\dfrac{x+1}{x-1}\) duoc ket qua la:
A. \(\dfrac{x^2+2x+1}{\left(x-1\right)^2}\) B. \(\dfrac{x^2+2x-1}{\left(x-1\right)^2}\) C. \(\dfrac{x^2-x-1}{\left(x-1\right)^2}\) D. \(\dfrac{x^2-2x-1}{\left(x-1\right)^2}\)
1) Dieu kien cua x de phan thuc \(\dfrac{2x^3y^5}{5\left(x-2\right)^2}\) co nghia la
A. x ≠ 2 B. x ≠ -2
C. x = -2 D. x = 2
Chứng minh các đẳng thức sau (với \(n\in N^{\circledast}\) )
a) \(1^2+3^2+5^2+.....+\left(2n-1\right)^2=\dfrac{n\left(4n^2-1\right)}{3}\)
b) \(1^3+2^3+3^3+.....+n^3=\dfrac{n^2\left(n+1\right)^2}{4}\)
Chứng minh các đẳng thức sau (với \(n\in N^{\circledast}\))
a) \(2+5+8+...+\left(3n-1\right)=\dfrac{n\left(3n+1\right)}{2}\)
b) \(3+9+27+....+3^n=\dfrac{1}{2}\left(3^{n+1}-3\right)\)
Chứng minh rằng với \(n\in N^{\circledast}\), ta có các đẳng thức :
a) \(2+5+8+.....+3n-1=\dfrac{n\left(3n+1\right)}{2}\)
b) \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+....+\dfrac{1}{2^n}=\dfrac{2^n-1}{2^n}\)
c) \(1^2+2^2+3^2+....+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)
tim ct tong quat
\(S_n\)=\(1^2-2^2+3^2-4^2+...+\left(-1\right)^nn^2\)
Chứng minh rằng số đường chéo của một đa giác lồi n cạnh là : \(\dfrac{n\left(n-3\right)}{2}\) ?
Chứng minh rằng với các số thực \(a_1,a_2,a_3,....,a_n\left(n\in N^{\circledast}\right)\), ta có :
\(\left|a_1+a_2+...+a_n\right|\le\left|a_a\right|+\left|a_1\right|+....+\left|a_n\right|\)
Cho n số thực \(a_1,a_2,...,a_n\) thỏa mãn điều kiện
\(-1< a_i\le0\) với \(i=\overline{1,n}\)
Chứng minh rằng với mọi \(n\in N^{\circledast}\) ta có
\(\left(1+a_1\right)\left(1+a_2\right)....\left(1+a_n\right)\ge1+a_1+a_2+...+a_n\)