Chứng minh các đẳng thức sau (với \(n\in N^{\circledast}\))
a) \(2+5+8+...+\left(3n-1\right)=\dfrac{n\left(3n+1\right)}{2}\)
b) \(3+9+27+....+3^n=\dfrac{1}{2}\left(3^{n+1}-3\right)\)
Chứng minh rằng với \(n\in N^{\circledast}\), ta có các đẳng thức :
a) \(2+5+8+.....+3n-1=\dfrac{n\left(3n+1\right)}{2}\)
b) \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+....+\dfrac{1}{2^n}=\dfrac{2^n-1}{2^n}\)
c) \(1^2+2^2+3^2+....+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Chứng minh các bất đẳng thức sau \(\left(n\in N^{\circledast}\right)\):
a) \(2^{n+2}>2n+5\)
b) \(\sin^{2n}\alpha+\cos^{2n}\alpha\le1\)
Cho tổng \(S_n=\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{n\left(n+1\right)}\) với \(n\in N^{\circledast}\) ?
a) Tính \(S_1,S_2,S_3\) ?
b) Dự đoán công thức tỉnh tổng \(S_n\) và chứng minh bằng quy nạp
Chứng minh rằng số đường chéo của một đa giác lồi n cạnh là : \(\dfrac{n\left(n-3\right)}{2}\) ?
cho n là số dương CMR:
a) 2+4+6+...+2n=n(n+1)
b) 1^3+3^3+5^3+...+(2n-1)^3=2n(2n^2-1)
chứng minh bằng PP quy nạp
cho n là số dương CMR:
a) 2+4+6+...+2n=n(n+1)
b) 1^3+3^3+5^3+...+(2n-1)^3=2n(2n^2-1)
chứng minh bằng PP quy nạp
Chứng minh rằng với mọi \(n\in N^{\circledast}\), ta có :
a) \(2n^3-3n^2+n\) chia hết cho 6
b) \(11^{n+1}+12^{n-1}\) chia hết cho 133
Chứng minh rằng với mọi số tự nhiên \(n\ge2\), ta có các bất đẳng thức :
a) \(3^n>3n+1\)
b) \(2^{n+1}>2n+3\)