a.
Đặt \(\left\{{}\begin{matrix}\left(d\right):y=ax+b\\\left(d^`\right):y=2x+3\end{matrix}\right.\)
Ta có:
\(\left(d\right)//\left(d^`\right)\Rightarrow\left\{{}\begin{matrix}a=3\\a\ne0\\b\ne3\end{matrix}\right.\)
Vì \(\left(d\right)\) đi qua \(O\left(0;0\right)\)
Suy ra:
\(0=a.0+b\)
\(\Leftrightarrow b=0\left(2\right)\)
(1),(2)\(\Rightarrow\left(d\right):y=2x\)
b.
Vì \(\left(d\right)\) cắt \(\left(d^{``}\right):y=x+3\) tại \(A\left(0:y\right)\)
Suy ra:
\(a.0+b=0+3\)
\(\Leftrightarrow b=3\left(3\right)\)
Vì \(\left(d\right)\) đi qua \(M\left(-1;1\right)\)
Suy ra:
\(1=a.\left(-1\right)+3\)
\(\Leftrightarrow a=2\left(4\right)\)
(3),(4)\(\Rightarrow\left(d\right):y=2x+3\)