Lời giải:
Ta có:
\(m^3(x-2)-8(x+m)=4m^2\)
\(\Leftrightarrow x(m^3-8)=2m^3+4m^2+8m\)
\(\Leftrightarrow x(m-2)(m^2+2m+4)=2m(m^2+2m+4)\)
\(\Leftrightarrow (m^2+2m+4)[x(m-2)-2m]=0\)
\(\Leftrightarrow x(m-2)-2m=0\) (do \(m^2+2m+4=(m+1)^2+3>0\forall m\) )
Để PT có nghiệm duy nhất thì \(m-2\neq 0\Leftrightarrow m\neq 2\) (1)
Khi đó nghiệm của PT là: \(x=\frac{2m}{m-2}\leq 1\Leftrightarrow 2+\frac{4}{m-2}\leq 1\)
\(\Leftrightarrow \frac{4}{m-2}\leq -1\)
\(0> m-2\geq -4\Leftrightarrow 2> m\geq -2\) (2)
Vậy kết hợp (1)(2) suy ra \(2> m\geq -2\)