Lời giải:
Theo định lý Bezout về phép chia đa thức thì số dư của \(f(x)=2x^3+ax+b\) cho \(x+1\) và \(x-2\) lần lượt là \(f(-1)\) và \(f(2)\)
Do đó:
\(\left\{\begin{matrix} f(-1)=-2-a+b=-6\\ f(2)=16+2a+b=21\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} -a+b=-4\\ 2a+b=5\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=3\\ b=-1\end{matrix}\right.\)
Đúng 0
Bình luận (0)