ta có: \(x^4+x^2+1\)
\(=\left(x^2\right)^2+2.x^2.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(=\left(x^2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x^2+\dfrac{1}{2 }\right)^2\ge0\)
Nên \(\left(x^2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
x4 + x2 + 1 = (x4 + 2x2 + 1) – x2
= [(x2)2 + 2x2 + 1] – x2
= [x2 + 1]2 – x2
= [x2 + 1 + x] [x2 + 1 – x]